

MONITORING YEAR 2 ANNUAL REPORT

Final

AGONY ACRES MITIGATION SITE

Guilford County, NC NCDEQ Contract 004949 DMS Project Number 95716

Data Collection Period: January 2016 – August 2016 Draft Submission Date: September 26, 2016 Final Submission Date: October 19, 2016

PREPARED FOR:

NC Department of Environmental Quality Division of Mitigation Services 1652 Mail Service Center Raleigh, NC 27699-1652

PREPARED BY:

Wildlands Engineering, Inc. 312 West Millbrook Road, Suite 225 Raleigh, NC 27609

> **Jason Lorch** jlorch@wildlandseng.com Phone: 919.851.9986

EXECUTIVE SUMMARY

Wildlands Engineering, Inc. (Wildlands) completed a full delivery project at the Agony Acres Mitigation Site (Site) for the North Carolina Division of Mitigation Services (DMS) to restore, enhance, and preserve a total of 9,195 linear feet (LF) of perennial and intermittent stream in Guilford County, NC. The Site provides 6,596 Stream Mitigation Units (SMUs) and 3.0 Buffer Mitigation Units (BMUs). The Site is located in the Reedy Fork Watershed within Cape Fear River Basin Hydrologic Unit Code (HUC) 03030002 (Cape Fear 02) near Ossipee, NC (Figure 1). The streams are all unnamed tributaries (UT) to Reedy Fork and are referred to herein as UT1, UT1A, UT1B, and UT2. The Site also includes 3.0 acres of riparian buffer restoration along Reedy Fork and UT1.

The Site is located within the Jordan Lake Water Supply Watershed which has been designated as a Nutrient Sensitive Water. The Site's watershed is within Cape Fear local watershed HUC 03030002020070, which was not identified as a Cape Fear 02 Targeted Local Watershed (TLW) in DMS's 2009 Cape Fear River Basin Restoration Priority (RBRP) plan; however, this local watershed was later designated as a Targeted Resource Area (TRA) in the 2011 Request for Proposals (RFP) in the Cape Fear 02. The Agony Acres Mitigation Site fully supports the Cataloging Unit (CU)-wide functional objectives stated in the 2011 RFP to reduce and control nutrient inputs, reduce and control sediment inputs, and protect and augment Significant Natural Heritage Areas in the Cape Fear 02 River Basin. The Site will contribute to meeting the CU-wide Functional Improvement Objectives by establishing the following project goals:

- Reduce sediment inputs by removing cattle from streams and restoring degraded and eroding stream channels;
- Return a network of streams to a stable form that is capable of supporting biological functions;
- Reduce fecal coliform, nitrogen, and phosphorous inputs through removing cattle from streams and establishing and augmenting a forested riparian corridor;
- Protect existing high quality streams and forested buffers; and
- Improve and protect hydrologic inputs to the adjacent Reedy Fork Aquatic Habitat Significant Natural Heritage Area.

The project is helping meet the goals for the watershed outlined in the RBRP and provide numerous ecological benefits within the Cape Fear River Basin. While many of these benefits are limited to the Agony Acres project area, others, such as pollutant removal, reduced sediment loading, and improved aquatic and terrestrial habitat, have farther-reaching effects.

Stream restoration and enhancement construction efforts were completed in September 2014. Baseline as-built monitoring activities (MYO) were completed between October and December 2014. A conservation easement is in place on 30.78 acres of stream and riparian corridors to protect them in perpetuity.

Monitoring Year 2 (MY2) assessment and site visits were completed between January and August, 2016 to assess the conditions of the project. Overall, the Site has met the required vegetation and stream success criteria for MY2. The overall average stem density for the Site at MY2 is 531 stems per acre, which is greater than the 320 stems per acre density required for MY3. All restored and enhanced streams are stable and functioning as designed. UT1B has two pressure transducers installed to monitor stream flow. Baseflow must be present for at least some portion of the year (most likely in the winter/early spring) during years with normal rainfall conditions. Both stream gages on UT1B met the hydrologic criteria for MY2 (Appendix 5).

AGONY ACRES MITIGATION SITE

Monitoring Year 2 Annual Report

TABLE OF CONTENTS

Section 1: P	PROJECT OVERVIEW	1
1.1 Pro	ject Goals and Objectives	2
1.2 Mo	nitoring Year 2 Data Assessment	3
1.2.1	Vegetative Assessment	
1.2.2	Vegetation Areas of Concern	
1.2.3	Stream Assessment	
1.2.4	Stream Areas of Concern	4
1.2.5	Hydrology Assessment	4
1.2.6	Maintenance Plan	5
1.3 Mo	nitoring Year 2 Summary	5
	/IETHODOLOGY	
Section 3: R	EFERENCES	7

APPENDICES

Appendix 1	General Tables and Figures
Figure 1	Project Vicinity Map
Figure 2	Project Component/ Asset Map
Table 1	Project Components and Mitigation Credits
Table 2	Project Activity and Reporting History
Table 3	Project Contact Table
Table 4	Project Information and Attributes
Appendix 2	Visual Assessment Data
Figures 3.0 - 3.3	Integrated Current Condition Plan View
Tables 5a-d	Visual Stream Morphology Stability Assessment Table

Table 6Vegetation Condition Assessment TableStream Photographs

Vegetation Photographs

Appendix 3	Vegetation Plot Data
Table 7	Vegetation Plot Criteria Attainment
Table 8	CVS Vegetation Plot Metadata
Table 9	Planted and Total Stem Counts
Appendix 4	Morphological Summary Data and Plots
Tables 10a-d	Baseline Stream Data Summary
Table 11	Morphology and Hydraulic Summary (Dimensional Parameters – Cross Section)
Tables 12a-f	Monitoring Data – Stream Reach Data Summary
Cross Section Plots	
Reachwide and Cross	Section Pebble Count Plots

Appendix 5	Hydrology Summary Data and Plots
Table 13	Verification of Bankfull Events
Monthly Rainfall Data	
Stream Flow Gage Plots	

Section 1: **PROJECT OVERVIEW**

The Agony Acres Mitigation Site (Site) is located in northeastern Guilford County, north of Gibsonville (Figure 1). From Gibsonville take NC 61 north 5.5 miles. Turn right on Sockwell Road and travel 1.4 miles. The project site is located north of Sockwell Road and is bound on the north by Reedy Fork. The Site is located in the Carolina Slate Belt of the Piedmont Physiographic Province. The project watershed is classified as approximately 65% managed herbaceous cover, 30% mixed upland hardwoods, 3% cultivated, 2% southern yellow pine, and the remaining 1% is low intensity development. The drainage area for the Agony Acres Mitigation Site is 358 acres.

The Site is located in the Reedy Fork Watershed within the Jordan Lake Water Supply Watershed which has been designated a Nutrient Sensitive Water. The project streams flow directly into Reedy Fork which flows into the Haw River and eventually into the Jordan Lake Reservoir. The Site's watershed is within Hydrologic Unit Code (HUC) 03030002020070 which was not identified as a Cape Fear 02 Targeted Local Watershed (TLW) in DMS's 2009 Cape Fear River Basin Restoration Priority (RBRP) plan; however, this HUC was later designated as a Targeted Resource Area (TRA) in the 2011 Request for Proposals (RFP) in the Cape Fear 02. The Site connects to Reedy Fork and three separate but connected Significant Natural Heritage areas. Reedy Fork Aquatic Habitat, Reedy Fork Slopes at NC 61, and Altamahaw Alluvial Forest are all listed on the NC Natural Heritage GIS database and are immediately adjacent to the Site. There are also records for several state threatened, special concern, and significantly rare mussel species in Reedy Fork.

DMS completed a Local Watershed Plan (LWP) in 2008 on the HUC immediately downstream which begins at the confluence of Reedy Fork and the Haw River and includes Travis and Tickle Creeks. The Site is located less than one mile outside of the LWP area and has a very similar land use pattern. The 2008 Little Alamance, Travis, and Tickle Creeks LWP identified nutrient inputs from agriculture and stream bank erosion in altered reaches as major stressors within this TLW. The Site was identified as a stream and buffer restoration and cattle exclusion opportunity to improve water quality and buffers within the TRA.

The Site consists of four tributaries to Reedy Fork which are located within the North Carolina Division of Water Resources (NCDWR) subbasin 03-06-02 of the Cape Fear River Basin. The project stream reaches include UT1, UT1A, UT1B, and UT2.

Mitigation work within the Site included restoration, enhancement, and preservation of 9,195 linear feet (LF) of perennial and intermittent stream channel and 3.0 acres (ac) of riparian buffer restoration. The Site provides 6,596 Stream Mitigation Units (SMUs) and 3.0 Buffer Mitigation Units (BMUs). The stream areas were also planted with native vegetation to improve habitat and protect water quality.

The final mitigation plan was submitted and accepted by the DMS in March 2014. Construction activities were completed by Land Mechanic Designs, Inc. in September 2014. The planting was completed by Bruton Natural Systems, Inc. in December 2014. The baseline as-built survey was completed by Kee Mapping and Surveying, in October 2014. Annual monitoring will be conducted for seven years with the close-out anticipated to occur in 2022 given the success criteria are met. Appendix 1 provides more detailed project activity, history, contact information, directions, and watershed/site background information for this project.

1.1 Project Goals and Objectives

Prior to construction activities, the stream channels exhibited varying degrees of degradation across the Site. The Site was used as agricultural and pasture land and most of the buffers had been reduced to narrow corridors. Cattle had free access to the streams, which resulted in sporadic degraded stream banks and poor bed forms.

The stream channels on the Site that were restored were previously incised and overwidened in many locations, likely as a result of historic channelization. The alterations of the Site to promote cattle grazing and farming resulted in elimination of many of the ecological functions of this small stream complex. Specifically, functional losses at the Site included degraded aquatic habitat, altered hydrology (related to loss of floodplain connection and lowered water table), and reduction of quality and amount of riparian wetland habitats and related water quality benefits. Ongoing bank erosion was also occurring at some locations due to high, overly steep banks and lack of bank vegetation. Table 4 in Appendix 1 and Tables 10a-d in Appendix 4 present the pre-restoration conditions in detail.

The mitigation project is intended to provide numerous ecological benefits within the Cape Fear River Basin. While many of these benefits are limited to the Agony Acres Mitigation Site project area, others, such as pollutant removal and improved aquatic and terrestrial habitat, have more far-reaching effects. Expected improvements to water quality and ecological processes are outlined below as project goals and objectives. These project goals were established and completed with careful consideration of goals and objectives that were described in the RBRP and to meet the North Carolina Division of Mitigation Service's (DMS) mitigation needs while maximizing the ecological and water quality uplift within the watershed.

The following project specific goals established in the Agony Acres Mitigation Plan (Wildlands, 2014) include:

- Reduce sediment inputs by removing cattle from streams and restoring degraded and eroding stream channels;
- Return a network of streams to a stable form that is capable of supporting biological functions important to sensitive species within and adjacent to the project site;
- Reduce fecal coliform, nitrogen, and phosphorous inputs through removing cattle from streams and establishing and augmenting a forested riparian corridor;
- Protect existing high quality streams and forested buffers that provide habitat important to sensitive species within and adjacent to the project site;
- Improve and protect hydrologic inputs to the adjacent Reedy Fork Aquatic Habitat Significant Natural Heritage Area; and
- Improve and protect hydrologic inputs to Reedy Fork, which is listed as impaired on the 2012 NC 303(d) list for impaired aquatic life and for elevated fecal coliform levels.

The project goals will be addressed through the following project objectives:

- On-site nutrient inputs were decreased by removing cattle from streams, re-establishing floodplain connectivity, and filtering on-site runoff through buffer zones. Off-site nutrient input will be absorbed on-site by filtering flood flows through restored floodplain areas, where flood flow will spread through native vegetation. Vegetation is expected to uptake excess nutrients.
- Stream bank erosion which contributes sediment load to the creeks was greatly reduced, if not eliminated, in the project area. Eroding stream banks were stabilized using bioengineering, natural channel design techniques, and grading to reduce bank angles and bank height. Storm flow containing grit and fine sediment is filtered through restored floodplain areas, where flow

will spread through native vegetation. Spreading flood flows also reduces velocity and allows sediment to settle out. Sediment transport capacity of restored reaches was improved so that capacity balances more closely to load. Sediment load reduction will be monitored through assessing bank stability with cross section surveys and visual assessment through photo documentation which serves as an accepted surrogate for direct turbidity measurements.

- Restored riffle/pool sequences promote aeration of water and create deep water zones, helping to lower water temperature. Establishment and maintenance of riparian buffers creates long-term shading of the channel flow to minimize thermal heating. Lower water temperatures will help maintain dissolved oxygen concentrations.
- In-stream structures were constructed to improve habitat diversity and trap detritus. Wood habitat structures were included in the stream as part of the restoration design. Such structures include log drops and rock structures that incorporate woody debris and native onsite rock.
- Adjacent buffer and riparian habitats were restored with native vegetation as part of the project. Native vegetation provides cover and food for terrestrial creatures. Native plant species were planted and invasive species treated. Eroding and unstable areas were stabilized with vegetation as part of this project.
- The restored land is protected in perpetuity through a conservation easement.

The design streams were restored to the appropriate form based on the surrounding landscape, climate, and natural vegetation communities but also with strong consideration to existing watershed conditions and trajectory. Specifically, the site design was developed to restore a small stream complex directly adjacent to Reedy Fork. Other key factors addressed in the design were to create stable habitats, improve riparian buffers, and restore the natural migration patterns for fish spawning. Figure 2 and Table 1 in Appendix 1 present the stream mitigation components for the Agony Acres Mitigation Site.

1.2 Monitoring Year 2 Data Assessment

Annual monitoring and quarterly site visits were conducted during MY2 to assess the condition of the project. The stream and buffer success criteria for the Site follow the approved success criteria presented in the Agony Acres Mitigation Plan (Wildlands, 2014).

1.2.1 Vegetative Assessment

Planted woody vegetation is being monitored in accordance with the guidelines and procedures developed by the Carolina Vegetation Survey-DMS Level 2 Protocol (Lee et al., 2006). A total of 16 vegetation plots were established during the baseline monitoring within the project easement areas. All of the plots were installed using a standard 10 meter by 10 meter plot. The final vegetative success criteria for the stream restoration and enhancement areas will be the survival of 210 planted stems per acre in the riparian corridor at the end of the required monitoring period (MY7). The interim measure of vegetative success will be the survival of at least 320 planted stems per acre at the end of the third monitoring year (MY3) and at least 260 stems per acre at the end of the fifth year of monitoring (MY5). Planted vegetation must average 10 feet in height in each plot at the end of the seventh year of monitoring. If this success criteria is met by MY5 and stem density is trending towards success (i.e., no less than 260 five year old stems per acre), monitoring of vegetation on the Site may be terminated provided written approval is provided by the United States Army Corps of Engineers in consultation with the NC Interagency Review Team. The final vegetative success criteria for the buffer restoration areas will be the survival of 320 planted stems per acre in the riparian corridor at the end of the required monitoring period (MY5). However, Wildlands plans to monitor these areas the same as the rest of the project for seven years and have the same success criteria of 210 stems per acre at the end of MY7.

The MY2 vegetative survey was completed in June 2016. The 2016 vegetation monitoring resulted in an average stem density of 531 stems per acre, which is greater than the interim requirement of 320 stems per acre required at MY3, but approximately 18% less than the baseline density recorded at MY0, 650 stems per acre, in January 2015. There is an average of 13 stems per plot which is a slight decrease from 16 stems per plot in MY1. All but one of the 16 plots are on track to meet the success criteria required for MY7 (Table 9, Appendix 3). Plot 10 had a planted stem density of 283 stems per acre. This plot will be monitored and supplemental planting will be performed as necessary. Refer to Appendix 2 for vegetation plot photographs and the vegetation condition assessment table and Appendix 3 for vegetation data tables.

1.2.2 Vegetation Areas of Concern

Tree of heaven (*Ailanthus altissima*) was observed growing sporadically in the easement downstream of the confluence of UT1 and UT1B. The seedlings were either pulled out of the ground by hand, or cut and stem treated with glyphosate during MY2. This area will continue to be monitored for new seedlings and will be treated with the appropriate herbicide as needed. Since portions of the adjacent land are in an organic farm, spraying herbicide is not allowed within 30 feet of active pasture or cropland. Any tree of heaven that is within 30 feet of active pasture or cropland will be pulled out of the ground and no herbicides will be used.

An area less that one acre in size along Reedy Fork; near vegetation plot 10, has a low planted stem density. Supplemental planting will be performed in this area during the fall/winter of 2016. Native trees from the original plant list will be used to supplement this area. Refer to the Integrated Current Condition Plan View Map (CCPV) in Appendix 2 for this area of low stem density.

1.2.3 Stream Assessment

Morphological surveys for the MY2 were conducted in March 2016. All streams within the Site are stable with little to no erosion and have met the success criteria for MY2. Refer to Appendix 2 for the visual assessment table, CCPV Map, and reference photographs. Refer to Appendix 4 for the morphological data and plots.

While there have been some minor post-construction adjustments within the restored channels; the cross sections show little to no change in the bankfull area, maximum depth, or width-to-depth ratio. Surveyed riffle cross sections fell within the parameters defined for channels of the appropriate Rosgen stream type. Pebble counts indicated coarser materials in the riffle features and smaller particles in the pool features.

Longitudinal profile surveys are not required on the project unless visual inspection indicates reach wide vertical stability concerns. Refer to Appendix 2 for the visual stability assessment table, CCPV Map, and reference photographs. Refer to Appendix 4 for the morphological data and plots.

1.2.4 Stream Areas of Concern

No stream areas of concern were identified during MY2.

1.2.5 Hydrology Assessment

Two bankfull flow events must be documented on the restoration and enhancement reaches within the seven-year monitoring period. The two bankfull events must occur in separate years. In addition, the presence of baseflow must be documented along portions of UT1B constructed with a Priority I restoration approach. Baseflow must be present for at least some portion of the year (most likely in the winter/early spring) during years with normal rainfall conditions.

Multiple bankfull events were recorded during MY2 at the Site. UT1B and UT2 each showed two bankfull events and UT1 and UT1A each recorded one bankfull event. During MY1, each stream recorded at least one bankfull event. Therefore, the Site has met the stream hydrology criteria. UT1B did show presence of baseflow for most of MY2. There were periods in the summer where baseflow went below ground surface but the rest of the year the channel had baseflow. UT1B has met baseflow criteria for both MY1 and MY2. Refer to Appendix 5 for hydrologic data and graphs.

1.2.6 Maintenance Plan

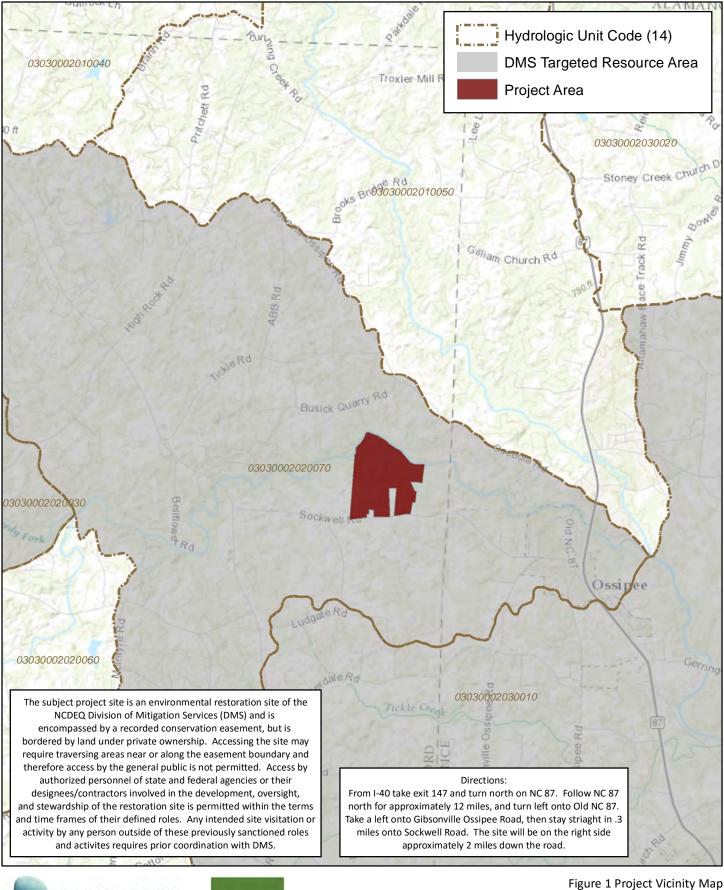
The area along Reedy Fork; near vegetation plot 10, will be planted during the fall/winter of 2016 as described in section 1.2.2 above.

1.3 Monitoring Year 2 Summary

Stream, vegetation, and hydrology criteria have been met for MY2 on the Site. All streams within the Site are stable and functioning as designed. The average stem density for the Site is on track to meeting the MY7 success criteria; with all but one individual vegetation plot meeting the MY2 success criteria as noted in the CCPV Map. All streams on the Site have recorded bankfull events and UT1B has shown the presence of baseflow for some portion of the year. Therefore, hydrology criteria has been met for MY2.

Summary information and data related to the performance of various project and monitoring elements can be found in the tables and figures in the report appendices. Narrative background and supporting information formerly found in these reports can be found in the Mitigation Plan documents available on DMS's website. All raw data supporting the tables and figures in the appendices are available from DMS upon request.

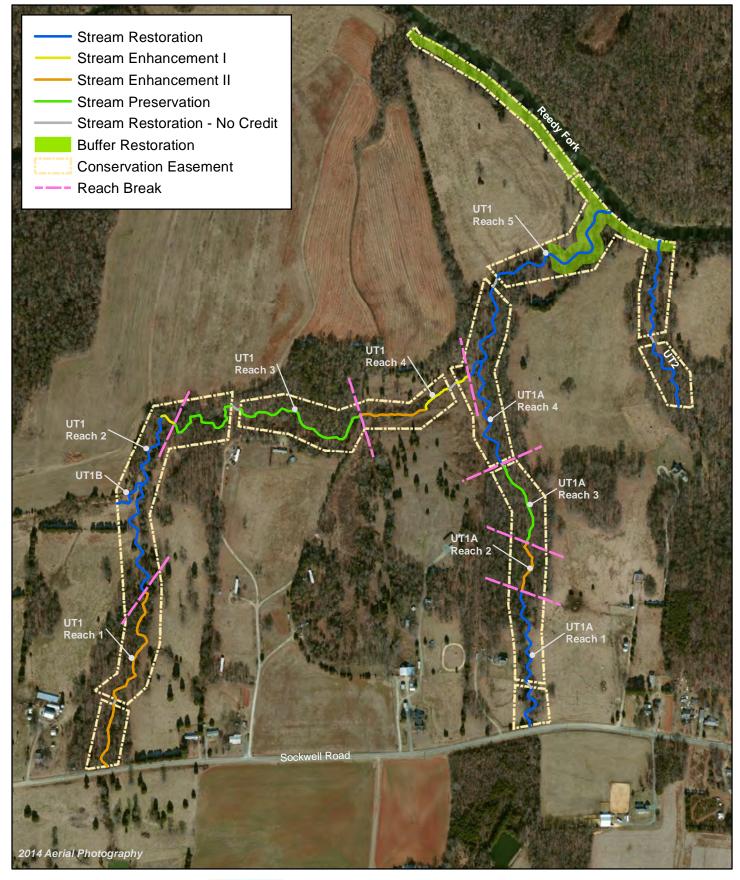
Section 2: METHODOLOGY


Geomorphic data was collected following the standards outlined in The Stream Channel Reference Site: An Illustrated Guide to Field Techniques (Harrelson et al., 1994) and in the Stream Restoration: A Natural Channel Design Handbook (Doll et al., 2003). All Integrated Current Condition Plan View Mapping was recorded using a Trimble handheld GPS with sub-meter accuracy and processed using Pathfinder and ArcView. Crest gages were installed in surveyed riffle cross sections and monitored quarterly. Hydrology attainment installation and monitoring methods are in accordance with the USACE (USACE, 2003) standards. Vegetation monitoring protocols followed the Carolina Vegetation Survey-DMS Level 2 Protocol (Lee et al., 2006). Reporting follows the DMS Monitoring Report Template and Guidance Version 1.3 (DMS, 2010).

Section 3: REFERENCES

- Doll, B.A., Grabow, G.L., Hall, K.A., Halley, J., Harman, W.A., Jennings, G.D., and Wise, D.E. 2003. Stream Restoration A Natural Channel Design Handbook.
- Harrelson, Cheryl C; Rawlins, C.L.; Potyondy, John P. 1994. *Stream Channel Reference Sites: An Illustrated Guide to Field Technique*. Gen. Tech. Rep. RM-245. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Forest and Range Experiment Station. 61 p.
- Lee, Michael T., Peet, Robert K., Steven D., Wentworth, Thomas R. 2006. CVS-DMS Protocol for Recording Vegetation Version 4.0. Retrieved from http://www.ncdms.net/business/monitoring/veg/datasheets.htm.
- Multi-Resolution Land Characteristics Consortium (MRLC). 2001. National Land Cover Database. http://www.mrlc.gov/nlcd.php
- North Carolina Division of Water Resources (NCDWR). 2011. Surface Water Classifications. http://portal.ncdeq.org/web/wq/ps/csu/classifications
- North Carolina Division of Water Resources, 2005. Cape Fear River Basinwide Water Quality Plan. http://h20.enr.state.nc.us/basinwide/draftCPFApril2005.htm
- Rosgen, D. L. 1994. A classification of natural rivers. Catena 22:169-199.
- Rosgen, D.L. 1996. Applied River Morphology. Pagosa Springs, CO: Wildland Hydrology Books.
- United States Army Corps of Engineers (USACE), 2003. Stream Mitigation Guidelines. USACE, NCDEQ-DWR, USEPA, NCWRC.
- United States Geological Survey (USGS), 1998. North Carolina Geology. http://www.geology.enr.state.nc.us/usgs/carolina.htm
- Wildlands Engineering, Inc (2014). Agony Acres Mitigation Site Mitigation Plan. DMS, Raleigh, NC.

APPENDIX 1. General Tables and Figures



0.5

A N

1 Miles

Figure 1 Project Vicinity Map Agony Acres Mitigation Site DMS Project No. 95716 Monitoring Year 2 - 2016

0

250 500 Feet

Ń

Figure 2 Project Component/ Asset Map Agony Acres Mitigation Site DMS Project No.95716 Monitoring Year 2 - 2016

Table 1. Project Components and Mitigation Credits

Agony Acres Mitigation Site (DMS Project No.95716)

Monitoring Year 2 - 2016

				MITIGA	TION CREDI	TS						
	S	Stream	Riparian V	Vetland	Non-Ripari	an Wetland	Buffer	Nitrogen Nutrient Offset	Phosphorous	Nutrient Offset		
Туре	R	RE	R	RE	R	RE						
Totals	6,235	361	N/A	N/A	N/A	N/A	3.0	N/A	1	I/A		
				PROJECT		NTS						
R	Reach ID	As-Built Stationing/ Location	Existing Footage/ Acreage	Approach	Restoration c Equiv	r Restoration alent		on Footage/ eage	Mitigation Ratio	Credits (SMU, WMU)		
				:	STREAMS							
	1-Reach 1 OT ROW)	100+00 to 100+14	14	EII	Enhano (No C	cement redit)	1	14				
	1-Reach 1	100+14 to 103+62; 103+93 to 111+24	1,079	EII	Enhand	cement	1,0	079	2.5	432		
(Ease	1-Reach 1 ment Break)	103+62 to 103+93	31	EII	Enhano (No C	redit)		31				
	1-Reach 2	111+24 to 122+61	1,039	P1	Resto			137	1	1,137		
	1-Reach 2 1-Reach 3	122+61 to 123+54 123+54 to 128+73; 120+20 to 127+60	93 1,350	EI	Enhand Preser			93 350	1.5 5	62 270		
	1-Reach 3 ment Break)	129+29 to 137+60 128+73 to 129+29	56		Preser (No C		5	56				
	1-Reach 4	137+60 to 141+15	355	EII	Enhand	,	3	55	2.5	142		
	1-Reach 4	141+15 to 142+90; 143+44 to 144+29	260	EI		Enhancement						173
	1-Reach 4 ement Break)	142+90 to 143+44	54	EI	Enhano (No C		5	54				
UT	1-Reach 5	144+29 to 150+08; 150+62 to 159+64	1,355	P1/2	Resto	ration	1,481		1	1,481		
	1-Reach 5 ment Break)	150+08 to 150+62	65	P1	Resto (No C		54					
	1A-Reach 1 OT ROW)	200+00 to 200+05	5	P1		Restoration (No Credit)		5				
UT1	1A-Reach 1	200+05 to 202+69; 203+09 to 208+57	738	P1	Restoration		8	12	1	812		
	1A-Reach 1 ement Break)	202+69 to 203+09	32	P1	Restoration (No Credit)		(No Credit) 40					
	1A-Reach 2	208+57 to 211+49	292	EII		cement		92	2.5	117		
UT1	1A-Reach 3 1A-Reach 3	211+49 to 216+06 216+06 to 216+36	457 30	EII	Preservation Enhancement				457 30			91
	ement Break) 1A-Reach 4	216+36 to 223+02	461	P1	(NO C Resto				1	666		
	UT1B	300+00 to 302+32	243	P1	Resto		232		1	232		
	UT2	400+00 to 404+19; 404+70 to 410+32	975	P1	Resto	ration	9	81	1	981		
(Ease	UT2 ment Break)	404+19 to 404+70	53	P1/2	Resto (No C	ration redit)	5	51				
			СОМРС	DNENT SU	MMATION							
Resto	pration Level	Stream (LF)		in Wetland acres)	Non-Riparia (acr		Buffer (acres)	Upland (acres)			
				Riverine	Non-Riverine]		
Restoration	-	5,309		-	-	-		3.0	-	4		
Inhancemer				-	-	-		-	-			
Enhancemer		353										
Enhancemer	nt II	1,726										
Creation Proconvation		4.007		-	-	-						
Preservation		1,807		-	-	-			-	-		
ingli Quality	Preservation	-		-	-	1 -			-	1		

Table 2. Project Activity and Reporting History

Agony Acres Mitigation Site (DMS Project No.95716) Monitoring Year 2 -2016

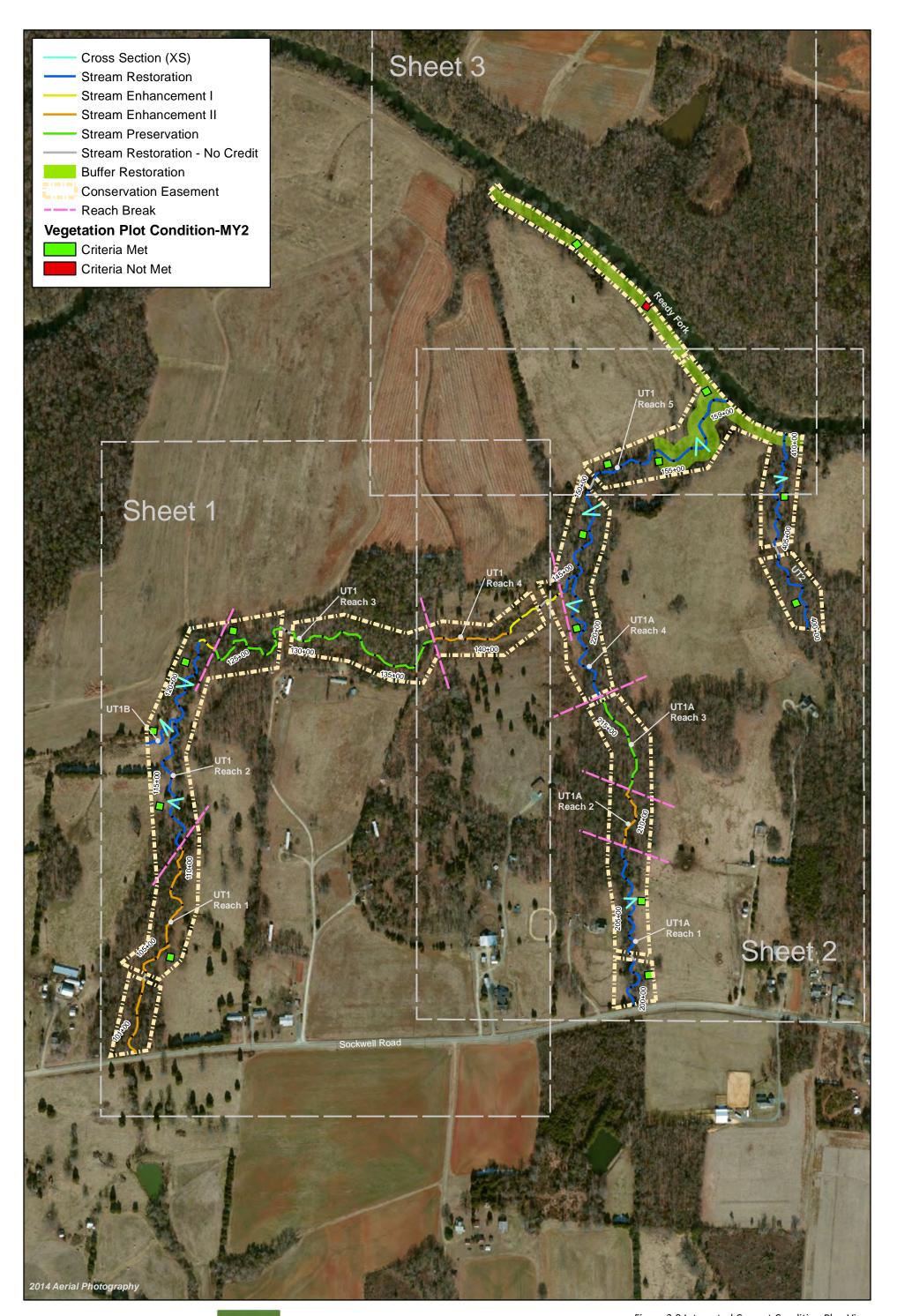
Activity or Report	Date Collection Complete	Completion or Scheduled Delivery
Mitigation Plan	October 2013- March 2014	March 2014
Final Design - Construction Plans	April 2014- June 2014	June 2014
Construction	June 2014- September 2014	September 2014
Temporary S&E mix applied to entire project area ¹	September 2014	September 2014
Permanent seed mix applied to reach/segments	September 2014	September 2014
Bare root and live stake plantings for reach/segments	December 2014	December 2014
Baseline Monitoring Document (Year 0)	October 2014- December 2014	February 2015
Year 1 Monitoring	March 2015- October 2015	December 2015
Year 2 Monitoring	August 2016	December 2016
Year 3 Monitoring	2017	December 2017
Year 4 Monitoring	2018	December 2018
Year 5 Monitoring	2019	December 2019
Year 6 Monitoring	2020	December 2020
Year 7 Monitoring	2021	December 2021

¹Seed and mulch is added as each section of construction is completed.

Table 3. Project Contact Table

Agony Acres Mitigation Site (DMS Project No.95716) Monitoring Year 2 - 2016

	Wildlands Engineering, Inc.
Designer	312 West Millbrook Road, Suite 225
Nicole Macaluso, PE, CFM	Raleigh, NC 27609
	919.851.9986
	Land Mechanic Designs, Inc.
Construction Contractor	126 Circle G Lane
	Willow Spring, NC 27592
	Bruton Natural Systems, Inc
Planting Contractor	P.O. Box 1197
	Fremont, NC 27830
	Land Mechanic Designs, Inc.
Seeding Contractor	126 Circle G Lane
	Willow Spring, NC 27592
Seed Mix Sources	Green Resource, LLC
Nursery Stock Suppliers	
Bare Roots	Dykes and Son Nursery
Live Stakes	Bruton Natural Systems, Inc
Monitoring Performers	Wildlands Engineering, Inc.
Monitoring, POC	Jason Lorch
	919.851.9986, ext. 107

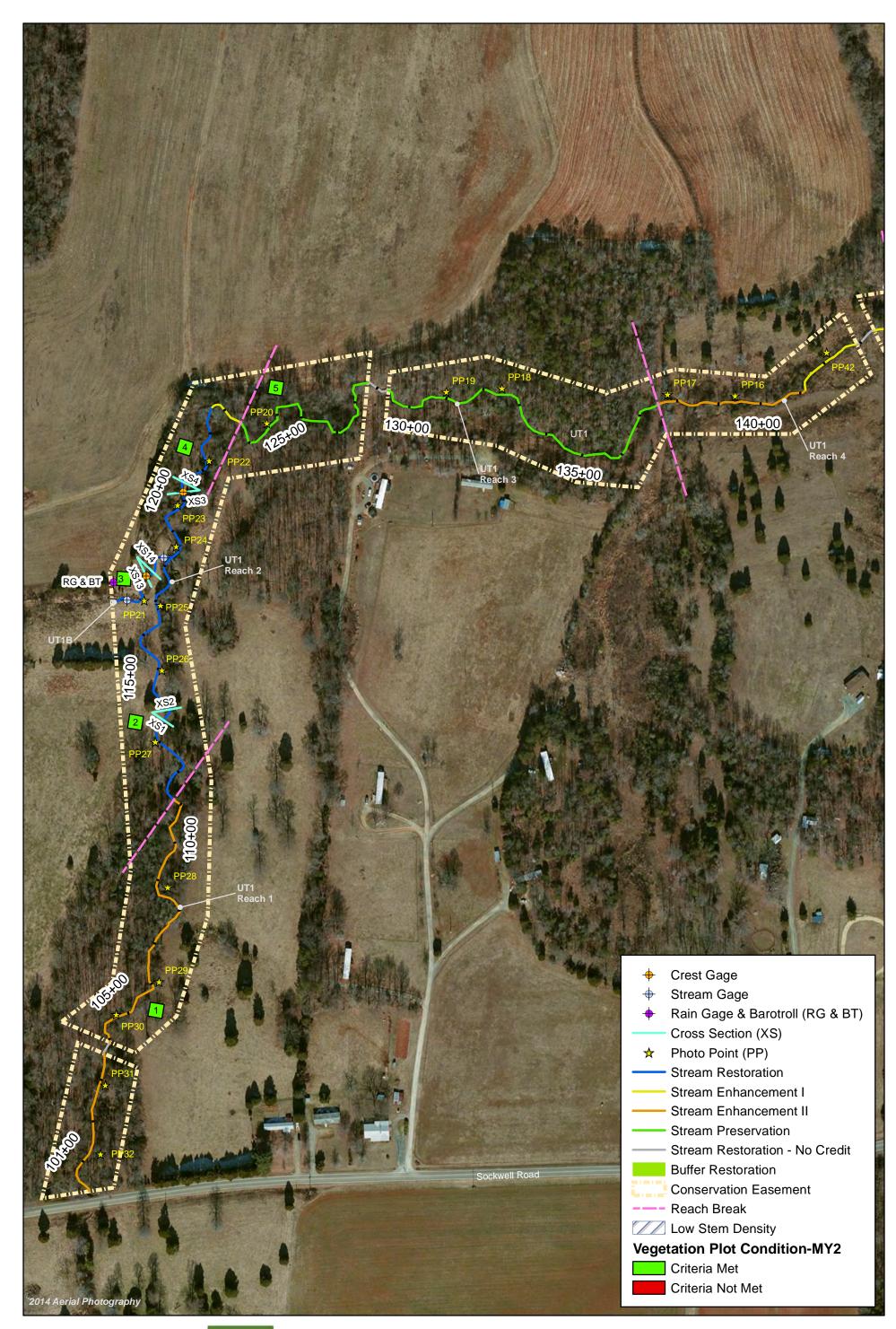

Table 4. Project Information and Attributes

г

Agony Acres Mitigation Site (DMS Project No.95716) Monitoring Year 2 - 2016

	PROJECT	NFORMATION						
Project Name	Agony Acres Mitigat	ion Site						
County	Guilford County							
Project Area (acres)	30.78 acres							
Project Coordinates (latitude and longitude)	36° 10' 40" N, 79° 33	3′ 02″ W						
PROJ	ECT WATERSHED	SUMMARY INF	ORMATION					
Physiographic Province	Piedmont							
River Basin	Cape Fear River							
USGS Hydrologic Unit 8-digit	03030002							
USGS Hydrologic Unit 14-digit	03030002020070							
DWR Sub-basin	03-06-02							
Project Drainiage Area (acres)	358 acres							
Project Drainage Area Percentage of Impervious Area	<1%							
CGIA Land Use Classification	-	aceous Cover, 30% N Pine, <1% Low Inter	lixed Upland Hardwoo	ods, 3% Cultivated,				
	1	ARY INFORMAT	, ,					
Parameters	UT1 - Reaches 1 -3	UT1 - Reaches 4 & 5	UT1A	UT1B	L	IT2		
Length of reach (linear feet) - Post-Restoration	3,760	2,204	2,302	232	1,	032		
Drainage area (acres)	228	358	103	61		51		
NCDWR stream identification score	42.5	46.5	41	29.25		2.25		
NCDWR Water Quality Classification	42.5	40.5	WS-V	29.25	54	25		
	Р	Р	P/I	D		Р		
Morphological Desription (stream type)	P	۲	P/I	P P				
Evolutionary trend (Simon's Model) - Pre- Restoration	1, 111	III, IV	1, 11/111	11/111	I	/111		
Underlying mapped soils		garee loam, Coronaca ndy clay loam, Wehad	clay loam, Enon fine sar kee loam	ndy loam, Enon clay l	oam, Madiso	n clay		
Drainage class								
Soil Hydric status								
Slope								
FEMA classification			N/A					
Native vegetation community		Pie	dmont bottomland fo	orest				
Percent composition exotic invasive vegetation -Post- Restoration			0%					
	REGULATORY	CONSIDERATIO	NS					
Regulation	Applicable?	Resolved?	Sup	oporting Document	tation			
Waters of the United States - Section 404	Yes	Yes	USACE Nationwide F			ter Quality		
Waters of the United States - Section 401	Yes	Yes	Certification No. 388	35.				
Division of Land Quality (Dam Safety)	No	N/A	N/A					
Endangered Species Act	Yes	Yes	Agony Acres Mitigat effect" on Guilford C					
Historic Preservation Act	Yes	Yes	No historic resource SHPO dated 1/15/13		impacted (I	etter from		
Coastal Zone Management Act (CZMA)/Coastal Area Management Act (CAMA)	No	N/A	N/A					
FEMA Floodplain Compliance	N/A	N/A	The project streams do not have an associated regulatory floodplain; however portions of UT1, UT1A, and UT2 are located within the floodway and flood fringe of Reedy Fork (FEMA Zone AE, FIRM panels 8838 and 8848).					
Essential Fisheries Habitat	No	N/A	N/A					

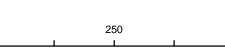
APPENDIX 2. Visual Assessment Data



0		250
	1	1
-		

Figure 3.0 Integrated Current Condition Plan View (Key) Agony Acres Mitigation Site DMS Project No.95716 Monitoring Year 2 - 2016

4


500 Feet

WILDLANDS

0

500 Feet

Δ

ψ

Figure 3.1 Integrated Current Condition Plan View (Sheet 1 of 3) Agony Acres Mitigation Site DMS Project No.95716 Monitoring Year 2 - 2016

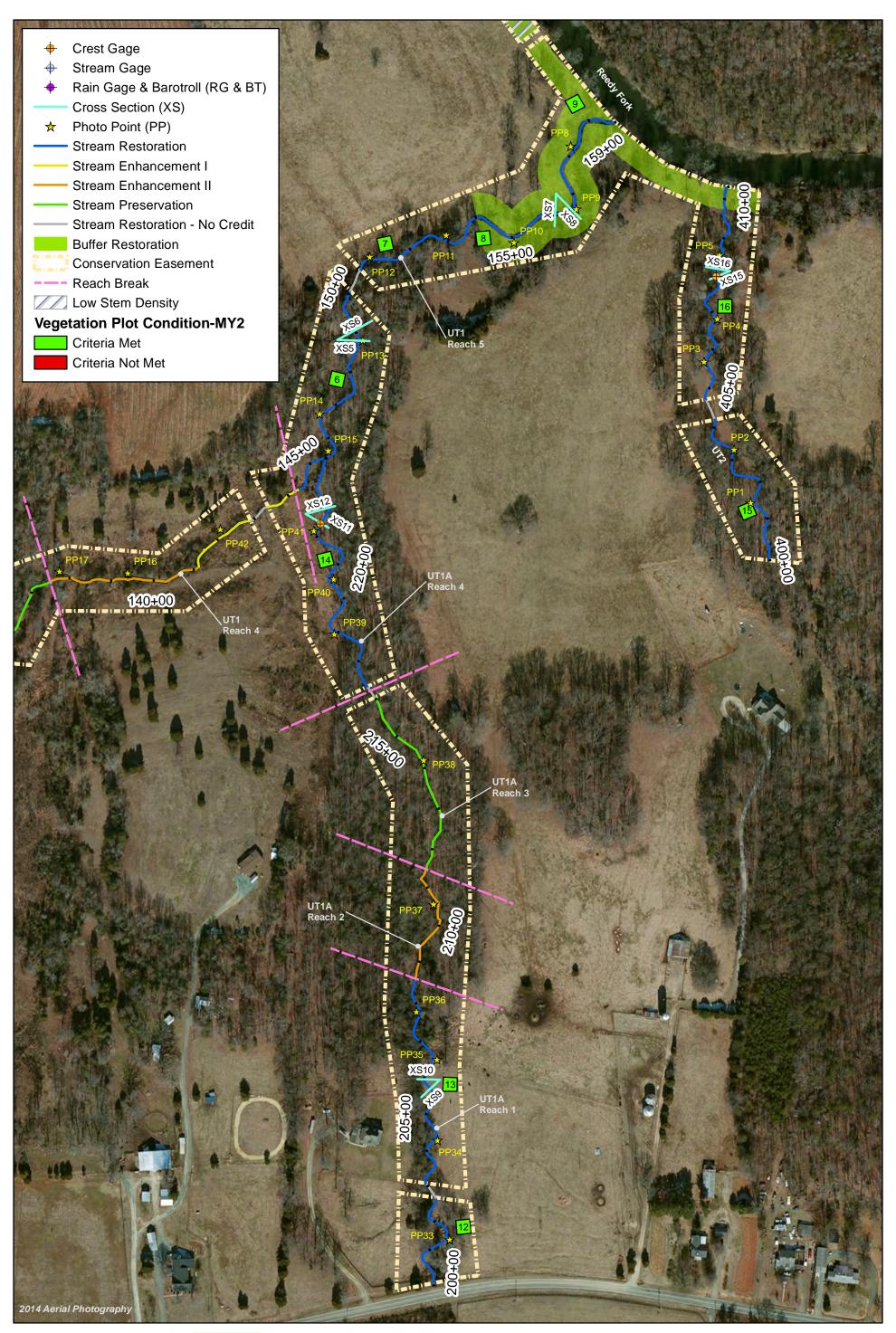


Figure 3.2 Integrated Current Condition Plan View (Sheet 2 of 3) Agony Acres Mitigation Site DMS Project No.95716 Monitoring Year 2 - 2016

A

Ν

Figure 3.3 Integrated Current Condition Plan View (Sheet 3 of 3) Agony Acres Mitigation Site DMS Project No.95716 Monitoring Year 2 - 2016

ψ

Table 5a. Visual Stream Morphology Stability Assessment TableAgony Acres Mitigation Site (DMS Project No. 95716)Monitoring Year 2 - 2016

UT1

Major Channel Category	Channel Sub-Category	Metric	Number Stable, Performing as Intended	Total Number in As-Built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended	Number with Stabilizing Woody Vegetation	Footage with Stabilizing Woody Vegetation	Adjust % for Stabilizing Woody Vegetation
	1. Vertical Stability	Aggradation			0	0	100%			
	(Riffle and Run units)	Degradation			0	0	100%			
	2. Riffle Condition	Texture/Substrate	42	42			100%			
	3. Meander Pool	Depth Sufficient	39	39			100%			
1. Bed	Condition	Length Appropriate	39	39			100%			
	4. Theleway Desition	Thalweg centering at upstream of meander bend (Run)	39	39			100%			
	4. Thalweg Position	Thalweg centering at downstream of meander bend (Glide)	39	39			100%			
	1. Scoured/Eroded	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion			0	0	100%	n/a	n/a	n/a
2. Bank	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does NOT include undercuts that are modest, appear sustainable and are providing habitat			0	0	100%	n/a	n/a	n/a
	3. Mass Wasting	Bank slumping, caving, or collapse			0	0	100%	n/a	n/a	n/a
				TOTALS	0	0	100%	n/a	n/a	n/a
	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs	16	16			100%			
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill	16	16			100%			
3. Engineered	2a. Piping	Structures lacking any substantial flow underneath sills or arms	16	16			100%			
Structures	3. Bank Protection	Bank erosion within the structures extent of influence does not exceed 15%	16	16			100%			
	4. Habitat	Pool forming structures maintaining ∼Max Pool Depth : Bankfull Depth ≥ 1.6 Rootwads/logs providing some cover at baseflow	16	16			100%			

Table 5b. Visual Stream Morphology Stability Assessment TableAgony Acres Mitigation Site (DMS Project No. 95716)Monitoring Year 2 - 2016

UT1A

Major Channel Category	Channel Sub-Category	Metric	Number Stable, Performing as Intended	Total Number in As-Built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended	Number with Stabilizing Woody Vegetation	Footage with Stabilizing Woody Vegetation	Adjust % for Stabilizing Woody Vegetation
	1. Vertical Stability	Aggradation			0	0	100%			
	(Riffle and Run units)	Degradation			0	0	100%			
	2. Riffle Condition	Texture/Substrate	26	26			100%			
	3. Meander Pool	Depth Sufficient	26	26			100%			
1. Bed	Condition	Length Appropriate	26	26			100%			
		Thalweg centering at upstream of meander bend (Run)	26	26			100%			
	4. Thalweg Position	Thalweg centering at downstream of meander bend (Glide)	26	26			100%			
	1. Scoured/Eroded	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion			0	0	100%	n/a	n/a	n/a
2. Bank	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does NOT include undercuts that are modest, appear sustainable and are providing habitat			0	0	100%	n/a	n/a	n/a
	3. Mass Wasting	Bank slumping, caving, or collapse			0	0	100%	n/a	n/a	n/a
	1			TOTALS	0	0	100%	n/a	n/a	n/a
	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs	3	3		1	100%		1	
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill	3	3			100%			
3. Engineered	2a. Piping	Structures lacking any substantial flow underneath sills or arms	3	3			100%			
Structures	3. Bank Protection	Bank erosion within the structures extent of influence does not exceed 15%	3	3			100%			
	4. Habitat	Pool forming structures maintaining ∼Max Pool Depth : Bankfull Depth ≥ 1.6 Rootwads/logs providing some cover at baseflow	3	3			100%			

Table 5c. Visual Stream Morphology Stability Assessment TableAgony Acres Mitigation Site (DMS Project No. 95716)Monitoring Year 2 - 2016

UT1B

Major Channel Category	Channel Sub-Category	Metric	Number Stable, Performing as Intended	Total Number in As-Built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended	Number with Stabilizing Woody Vegetation	Footage with Stabilizing Woody Vegetation	Adjust % for Stabilizing Woody Vegetation
	1. Vertical Stability	Aggradation			0	0	100%			
	(Riffle and Run units)	Degradation			0	0	100%			
	2. Riffle Condition	Texture/Substrate	6	6			100%			
	3. Meander Pool	Depth Sufficient	5	5			100%			
1. Bed	Condition	Length Appropriate	5	5			100%			
		Thalweg centering at upstream of meander bend (Run)	5	5			100%			
	4. Thalweg Position	Thalweg centering at downstream of meander bend (Glide)	5	5			100%			
						I				I
	1. Scoured/Eroded	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion			0	0	100%	n/a	n/a	n/a
2. Bank	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does NOT include undercuts that are modest, appear sustainable and are providing habitat			0	0	100%	n/a	n/a	n/a
	3. Mass Wasting	Bank slumping, caving, or collapse			0	0	100%	n/a	n/a	n/a
			L	TOTALS	0	0	100%	n/a	n/a	n/a
	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs	1	1			100%			
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill	1	1			100%			
3. Engineered	2a. Piping	Structures lacking any substantial flow underneath sills or arms	1	1			100%			
Structures	3. Bank Protection	Bank erosion within the structures extent of influence does not exceed 15%	1	1			100%			
	4. Habitat	Pool forming structures maintaining ∼Max Pool Depth : Bankfull Depth ≥ 1.6 Rootwads/logs providing some cover at baseflow	1	1			100%			

Table 5d. Visual Stream Morphology Stability Assessment TableAgony Acres Mitigation Site (DMS Project No. 95716)

Monitoring Year 2 - 2016

UT2

Major Channel Category	Channel Sub-Category	Metric	Number Stable, Performing as Intended	Total Number in As-Built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended	Number with Stabilizing Woody Vegetation	Footage with Stabilizing Woody Vegetation	Adjust % for Stabilizing Woody Vegetation
1. Bed	1. Vertical Stability (Riffle and Run units)	Aggradation			0	0	100%			
		Degradation			0	0	100%			
	2. Riffle Condition	Texture/Substrate	20	20			100%			
	3. Meander Pool Condition	Depth Sufficient	21	21			100%			
		Length Appropriate	21	21			100%			
	4. Thalweg Position	Thalweg centering at upstream of meander bend (Run)	21	21			100%			
		Thalweg centering at downstream of meander bend (Glide)	21	21			100%			
2. Bank	1. Scoured/Eroded	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion			0	0	100%	n/a	n/a	n/a
	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does NOT include undercuts that are modest, appear sustainable and are providing habitat			0	0	100%	n/a	n/a	n/a
	3. Mass Wasting	Bank slumping, caving, or collapse			0	0	100%	n/a	n/a	n/a
				TOTALS	0	0	100%	n/a	n/a	n/a
3. Engineered Structures	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs	5	5			100%			
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill	5	5			100%			
	2a. Piping	Structures lacking any substantial flow underneath sills or arms	5	5			100%			
	3. Bank Protection	Bank erosion within the structures extent of influence does not exceed 15%	5	5			100%			
	4. Habitat	Pool forming structures maintaining ∼Max Pool Depth : Bankfull Depth ≥ 1.6 Rootwads/logs providing some cover at baseflow	5	5			100%			

Table 6. Vegetation Condition Assessment TableAgony Acres Mitigation Site (DMS Project No. 95716)Monitoring Year 2 - 2016

31

Planted Acreage	18				
Vegetation Category	Definitions	Mapping Threshold (Ac)	Number of Polygons	Combined Acreage	% of Planted Acreage
Bare Areas	Very limited cover of both woody and herbaceous material		0	0	0.0%
ow Stem Density Areas Woody stem densities clearly below target levels based on MY3, 4, or 5 stem count criteria.		0.1	1	0.7	3.6%
Total					3.6%
Areas of Poor Growth Rates or Vigor	s of Poor Growth Rates or Vigor Areas with woody stems of a size class that are obviously small given the monitoring year.		0	0	0%
Cumulative Total				0.7	4%

Easement Acreage

Vegetation Category	Definitions	Mapping Threshold (SF)	Number of Polygons	Combined Acreage	% of Planted Acreage
Invasive Areas of Concern Areas or points (if too small to render as polygons at map scale).		1,000	0	0	0.0%
Easement Encroachment Areas Areas or points (if too small to render as polygons at map scale).		none	0	0	0%

STREAM PHOTOGRAPHS UT2 Monitoring Year 2



PHOTO POINT 2 – looking upstream (03/15/2016)

PHOTO POINT 2 – looking downstream (03/15/2016)

PHOTO POINT 3 – looking upstream (03/15/2016)

PHOTO POINT 3 – looking downstream (03/15/2016)

PHOTO POINT 4 – looking upstream (03/15/2016)

PHOTO POINT 4 - looking downstream (03/15/2016)

PHOTO POINT 5 - looking upstream (03/15/2016)

PHOTO POINT 5 – looking downstream (03/15/2016)

STREAM PHOTOGRAPHS Reedy Fork (Buffer) Monitoring Year 2

PHOTO POINT 7 – looking upstream (03/15/2016)

PHOTO POINT 7 – looking downstream (03/15/2016)

STREAM PHOTOGRAPHS UT1 Reach 5 Monitoring Year 2

PHOTO POINT 9 – looking upstream (03/15/2016)

PHOTO POINT 9 – looking downstream (03/15/2016)

PHOTO POINT 12 - looking upstream (03/15/2016)

PHOTO POINT 12 – looking downstream (03/15/2016)

PHOTO POINT 13 – looking upstream (03/15/2016)

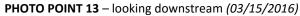


PHOTO POINT 15 - looking upstream (03/15/2016)

PHOTO POINT 15 – looking downstream (03/15/2016)


STREAM PHOTOGRAPHS UT1 Reach 4 Monitoring Year 2

PHOTO POINT 17 – looking upstream (03/15/2016)

PHOTO POINT 17 – looking downstream (03/15/2016)

R

STREAM PHOTOGRAPHS UT1 Reach 3 Monitoring Year 2

PHOTO POINT 19 – looking upstream (03/15/2016)

PHOTO POINT 19 – looking downstream (03/15/2016)

PHOTO POINT 20 – looking upstream (03/15/2016)

PHOTO POINT 20 – looking downstream (03/15/2016)

STREAM PHOTOGRAPHS UT1B Monitoring Year 2

STREAM PHOTOGRAPHS UT1 Reach 2 Monitoring Year 2

PHOTO POINT 23 – looking upstream (03/15/2016)

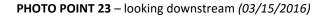


PHOTO POINT 25 – looking upstream (03/15/2016)

PHOTO POINT 25 – looking downstream (03/15/2016)

PHOTO POINT 26 - looking upstream (03/15/2016)

PHOTO POINT 26 - looking downstream (03/15/2016)

PHOTO POINT 27 – looking upstream (03/15/2016)

PHOTO POINT 27 – looking downstream (03/15/2016)

STREAM PHOTOGRAPHS UT1 Reach 1 Monitoring Year 2

PHOTO POINT 29 – looking upstream (03/15/2016)

PHOTO POINT 29 – looking downstream (03/15/2016)

PHOTO POINT 30 – looking upstream (03/15/2016)

PHOTO POINT 30 – looking downstream (03/15/2016)

PHOTO POINT 31 – looking upstream (03/15/2016)

PHOTO POINT 31 – looking downstream (03/15/2016)

PHOTO POINT 32 - looking upstream (03/15/2016)

PHOTO POINT 32 - looking downstream (03/15/2016)

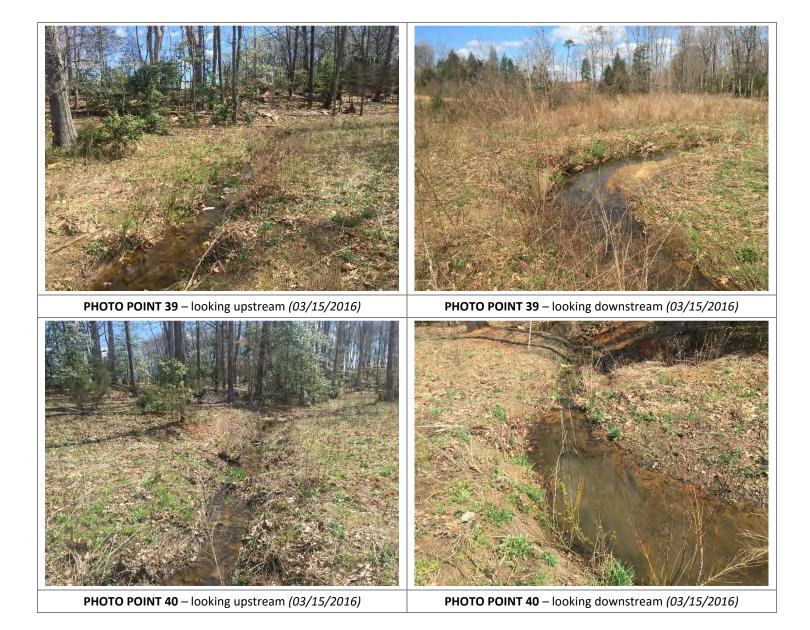
STREAM PHOTOGRAPHS UT1A Reach 1 Monitoring Year 2

R

PHOTO POINT 36 – looking upstream (03/15/2016)

PHOTO POINT 36 – looking downstream (03/15/2016)

STREAM PHOTOGRAPHS UT1A Reach 2 Monitoring Year 2



STREAM PHOTOGRAPHS UT1A Reach 3 Monitoring Year 2

STREAM PHOTOGRAPHS UT1A Reach 4 Monitoring Year 2

R

Agony Acres Mitigation Site Appendix 2: Visual Assessment Data – Stream Photographs

VEGETATION PHOTOGRAPHS Agony Acres Monitoring Year 2

VEG PLOT 3 (06/16/2016)

VEG PLOT 4 (06/16/2016)

R

VEG PLOT 11 (06/16/2016)

VEG PLOT 12 (06/16/2016)

VEG PLOT 13 (06/16/2016)

VEG PLOT 14 (06/16/2016)

R

APPENDIX 3. Vegetation Plot Data

Table 7. Vegetation Plot Criteria AttainmentAgony Acres Mitigation Site (DMS Project No. 95716)Monitoring Year 2 - 2016

Plot	MY1 Success Criteria Met (Y/N)	Tract Mean
1	Y	
2	Y	
3	Y	
4	Y	
5	Y	
6	Y	
7	Y	
8	Y	94%
9	Y	94%
10	N	
11	Y	
12	Y	
13	Y	
14	Y	
15	Y	
16	Y	

Table 8. CVS Vegetation Plot Metadata

Agony Acres Mitigation Site (DMS Project No. 95716) Monitoring Year 2 - 2016

Database name	Agony Acres- MY2- v2.3.1.mdb
Database location	F:\Projects\005-02136 Agony Acres\Monitoring\Monitoring Year 2\Vegetation Assessment
Computer name	JASON-PC
File size	68157440
DESCRIPTION OF WORKSHEETS IN THIS	DOCUMENT
Metadata	Description of database file, the report worksheets, and a summary of project(s) and project data.
Proj, planted	Each project is listed with its PLANTED stems per acre, for each year. This excludes live stakes.
Proj, total stems	Each project is listed with its TOTAL stems per acre, for each year. This includes live stakes, all planted stems, and all natural/volunteer stems.
Plots	List of plots surveyed with location and summary data (live stems, dead stems, missing, etc.).
Vigor	Frequency distribution of vigor classes for stems for all plots.
Vigor by Spp	Frequency distribution of vigor classes listed by species.
Damage	List of most frequent damage classes with number of occurrences and percent of total stems impacted by each.
Damage by Spp	Damage values tallied by type for each species.
Damage by Plot	Damage values tallied by type for each plot.
Planted Stems by Plot and Spp	A matrix of the count of PLANTED living stems of each species for each plot; dead and missing stems are excluded.
ALL Stems by Plot and spp	A matrix of the count of total living stems of each species (planted and natural volunteers combined) for each plot; dead and missing stems are excluded.
PROJECT SUMMARY	
Project Code	95716
project Name	Agony Acres Mitigation Site
Description	Stream & Buffer Site
River Basin	Cape Fear
Sampled Plots	16

Agony Acres Mitigation Site (DMS Project No.95716) Monitoring Year 2 -2016

_								Cur	rent Plo	t Data	(MY2 2	016)					
			9571	.6-WEI-	0001	9571	.6-WEI-	0002	9571	.6-WEI-	0003	9571	.6-WEI-	0004	9571	.6-WEI-	0005
Scientific Name	Common Name	Species Type	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т
Acer negundo	boxelder	Tree															
Acer rubrum	red maple	Tree															
Alnus serrulata	tag alder	Shrub	1	1	1				2	2	2	1	1	1			
Betula nigra	river birch	Tree				1	1	1	2	2	2	3	3	3			
Cornus amomum	silky dogwood	Shrub												1			
Fraxinus pennsylvanica	green ash	Tree	5	5	5	4	4	4	3	3	3	2	2	2	2	2	2
Ilex opaca	American holly	Tree			1												
Juglans nigra	black walnut	Tree															
Liquidambar styraciflua	sweetgum	Tree			5												
Liriodendron tulipifera	tuliptree	Tree			7												
Platanus occidentalis	American sycamore	Tree	4	4	4				4	4	4	4	4	9	2	2	2
Quercus michauxii	swamp chestnut oak	Tree							1	1	1	2	2	2	5	5	5
Quercus pagoda	cherrybark oak	Tree	2	2	2	4	4	4	2	2	2	2	2	2			
Quercus phellos	willow oak	Tree	2	2	2	2	2	2	2	2	2	1	1	1	1	1	1
Quercus rubra	northern red oak	Tree															
		Stem count	14	14	27	11	11	11	16	16	16	15	15	21	10	10	10
		size (ares)		1			1			1			1			1	
		size (ACRES)		0.02			0.02			0.02			0.02			0.02	
		Species count	5	5	8	4	4	4	7	7	7	7	7	8	4	4	4
		Stems per ACRE	566.6	566.6	1093	445.2	445.2	445.2	647.5	647.5	647.5	607	607	849.8	404.7	404.7	404.7

Color Coding for Table

Exceeds requirements by 10%

Exceeds requirements, but by less than 10%

Fails to meet requirements, by less than 10%

Fails to meet requirements by more than 10%

Volunteer species included in total

PnoLS: Number of Planted stems excluding live stakes

P-all: Number of planted stems including live stakes,

Agony Acres Mitigation Site (DMS Project No.95716) Monitoring Year 2 -2016

-								Cur	rent Plo	t Data	(MY2 2	016)					
			9571	.6-WEI-	0006	9571	L6-WEI-	0007	9571	6-WEI-	0008	9571	.6-WEI-	0009	9571	6-WEI-	0010
Scientific Name	Common Name	Species Type	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	т	PnoLS	P-all	т	PnoLS	P-all	Т
Acer negundo	boxelder	Tree															
Acer rubrum	red maple	Tree			20									10			
Alnus serrulata	tag alder	Shrub	4	4	4							1	1	1			
Betula nigra	river birch	Tree	3	3	3	4	4	4	1	1	1						
Cornus amomum	silky dogwood	Shrub															
Fraxinus pennsylvanica	green ash	Tree	2	2	2	4	4	4	5	5	5	6	6	11	2	2	2
llex opaca	American holly	Tree			2												
Juglans nigra	black walnut	Tree															
Liquidambar styraciflua	sweetgum	Tree			20												
Liriodendron tulipifera	tuliptree	Tree			20												
Platanus occidentalis	American sycamore	Tree	2	2	22	3	3	3	6	6	6	7	7	7	1	1	1
Quercus michauxii	swamp chestnut oak	Tree	2	2	2	4	4	4	3	3	3	1	1	1	1	1	1
Quercus pagoda	cherrybark oak	Tree	1	1	1										2	2	2
Quercus phellos	willow oak	Tree										1	1	1	1	1	1
Quercus rubra	northern red oak	Tree			20												
		Stem count	14	14	116	15	15	15	15	15	15	16	16	31	7	7	7
		size (ares)		1			1		-	1			1			1	
		size (ACRES)		0.02			0.02			0.02			0.02			0.02	
		Species count	6	6	11	4	4	4	4	4	4	5	5	6	5	5	5
		Stems per ACRE	566.6	566.6	4694	607	607	607	607	607	607	647.5	647.5	1255	283.3	283.3	283.3

Color Coding for Table

Exceeds requirements by 10%

Exceeds requirements, but by less than 10%

Fails to meet requirements, by less than 10%

Fails to meet requirements by more than 10%

Volunteer species included in total

PnoLS: Number of Planted stems excluding live stakes

P-all: Number of planted stems including live stakes,

Agony Acres Mitigation Site (DMS Project No.95716) Monitoring Year 2 -2016

_									(Current	: Plot D	ata (MY	2 2016)						
			9571	L6-WEI	-0011	9571	.6-WEI-	0012	9571	.6-WEI-	0013	9571	6-WEI-	0014	9571	6-WEI-	0015	957	16-WEI-0	0016
Scientific Name	Common Name	Species Type	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т
Acer negundo	boxelder	Tree																		
Acer rubrum	red maple	Tree																		
Alnus serrulata	tag alder	Shrub	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Betula nigra	river birch	Tree	2	2	2				2	2	2	2	2	2						
Cornus amomum	silky dogwood	Shrub															1			
Fraxinus pennsylvanica	green ash	Tree	8	8	9	2	2	2	2	2	2				3	3	5	2	2	24
llex opaca	American holly	Tree																		
Juglans nigra	black walnut	Tree																		
Liquidambar styraciflua	sweetgum	Tree			2															3
Liriodendron tulipifera	tuliptree	Tree												20			4			20
Platanus occidentalis	American sycamore	Tree	3	3	3	4	4	4				3	3	23	4	4	4	3	3	23
Quercus michauxii	swamp chestnut oak	Tree				2	2	2	6	6	6	4	4	4	2	2	2	2	2	2
Quercus pagoda	cherrybark oak	Tree				1	1	1	2	2	2	2	2	2	1	1	1	1	1	1
Quercus phellos	willow oak	Tree	1	1	1	1	1	1				1	1	1	1	1	1	4	4	4
Quercus rubra	northern red oak	Tree												20						
		Stem count	15	15	18	11	11	11	13	13	13	13	13	73	12	12	19	13	13	78
		size (ares)		1			1			1			1			1			1	
		size (ACRES)		0.02			0.02			0.02			0.02			0.02			0.02	
		Species count	5	5	6	6	6	6	5	5	5	6	6	8	6	6	8	6	6	8
		Stems per ACRE	607	607	728.4	445.2	445.2	445.2	526.1	526.1	526.1	526.1	526.1	2954	485.6	485.6	768.9	526.1	526.1	3157

Color Coding for Table

Exceeds requirements by 10%

Exceeds requirements, but by less than 10%

Fails to meet requirements, by less than 10%

Fails to meet requirements by more than 10%

Volunteer species included in total

PnoLS: Number of Planted stems excluding live stakes

P-all: Number of planted stems including live stakes,

Agony Acres Mitigation Site (DMS Project No.95716) Monitoring Year 2 -2016

						Anr	ual Me	eans			
			М	Y2 (201	.6)	М	Y1 (201	L5)	М	YO (201	.5)
Scientific Name	Common Name	Species Type	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т
Acer negundo	boxelder	Tree						2			
Acer rubrum	red maple	Tree			30			10			
Alnus serrulata	tag alder	Shrub	15	15	15	26	26	26	27	27	27
Betula nigra	river birch	Tree	20	20	20	27	27	27	28	28	28
Cornus amomum	silky dogwood	Shrub			2						
Fraxinus pennsylvanica	green ash	Tree	52	52	82	55	55	56	55	55	55
Ilex opaca	American holly	Tree			3						
Juglans nigra	black walnut	Tree						1			
Liquidambar styraciflua	sweetgum	Tree			30			10			
Liriodendron tulipifera	tuliptree	Tree			71			32			
Platanus occidentalis	American sycamore	Tree	50	50	115	56	56	101	56	56	56
Quercus michauxii	swamp chestnut oak	Tree	35	35	35	36	36	36	36	36	36
Quercus pagoda	cherrybark oak	Tree	20	20	20	25	25	25	25	25	25
Quercus phellos	willow oak	Tree	18	18	18	30	30	30	30	30	30
Quercus rubra	northern red oak	Tree			40			10			
		Stem count	210	210	481	255	255	366	257	257	257
		size (ares)		16			16			16	,
		size (ACRES)		0.40			0.40			0.40	
		Species count	7	7	13	7	7	13	7	7	7
		Stems per ACRE	531.1	531.1	1217	645	645	925.7	650	650	650

Color Coding for Table

Exceeds requirements by 10%

Exceeds requirements, but by less than 10%

Fails to meet requirements, by less than 10%

Fails to meet requirements by more than 10%

Volunteer species included in total

PnoLS: Number of Planted stems excluding live stakes

P-all: Number of planted stems including live stakes,

APPENDIX 4. Morphological Summary Data and Plots

Table 10a. Baseline Stream Data Summary

Agony Acres Mitigation Site (DMS Project No. 95716) Monitoring Year 2 - 2016

				DITION																	-
		PRE-RESTOR	ATION CON	DITION			RE	FERENCE	REACH D	AIA					DES	IGN		4	AS-BUILT/	BASELIN	£
Parameter	Gage	UT1 - Reach		Reach 5	Onsite Reference Reach - UT1A - Reach 3	Cr	Polecat eek	·	r Creek 1	·	r Creek 2	UT To Ca			Reach 2		Reach 5	UT1 - R			Reach 5
			Min	Max	Min Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max
Dimension and Substrate - Riffle		-			•								-			-					
Bankfull Width (ft		6.5	13.9	16.0	11.1	5.3	10.9	10.7	11.2	6.3	9.3	11.5	12.3		0.2		2.8	10.2	10.4	11.9	13.6
Floodprone Width (ft)	10	20	>50	25	25	65	60	>114	14	125	3		22	51	28	64	60	100		00
Bankfull Mean Dept	1	0.8	1.5	4.3	0.7	1.0	1.1	1.6	1.8	0.8	1.0	0.8	1.0		.8		0.9	0.6	0.9	0.8	0.9
Bankfull Max Dept	1	1.4	1.9	5.2	1.0	1.4	1.7	2.1	2.6	1.0	1.2	1.2	1.6	1.0	1.2	1.2	1.5	1.1	1.4	1.3	1.6
Bankfull Cross Sectional Area (ft ²	N/A	5.2	24.6	59.0	7.4	5.4	12.4	17.8	19.7	6.6	8.7	8.9	12.2	7	.9	1	2.0	6.2	9.0	9.1	11.9
Width/Depth Ratio)	8.2	3.3	10.4	16.6	5.2	9.6	5.8	7.1	7.9	9.3	12.3	14.4	1	3.1	1	3.6	12.0	16.8	15.5	15.7
Entrenchment Ratio)	1.5	1.2	>3.6	2	3.2	8.3	5.5	>10.2	1.7	4.3	>2	.5	2.2	5.0	2.2	5.0	5.9	9.6	14.7	16.8
Bank Height Ratio		2.3	1.0	2.0	1.0	1.0	1.1	1	1.0	1.0	1.0			1.0	1.0	1.0	1.0	1	.0	1	0
D50 (mm)	3.47	1	4.60														Silt/	Clay	0.	.11
Profile																					
Riffle Length (ft													-					13.9	73.2	23.7	81.3
Riffle Slope (ft/ft					N/A	0.0040	0.0470	0.0	0130	0.0184	0.0343	0.0188	0.0704	0.0148	0.0453	0.0118	0.0363	0.0078	0.0317	0.0090	0.0304
Pool Length (ft			1															17.2	42.8	17.6	76.6
Pool Max Depth (ft	N/A	2.4		2.5	1.6	1	L.8	3	3.3	1.2	1.8	2.	.6	0.9	3.2	1.1	3.9	1.6	3.7	2.0	4.9
Pool Spacing (ft					N/A	34	52	1 :	71	9	46	27	73	13	67	17	84	31	78	35	103
Pool Volume (ft ³						-													. <u> </u>		
	'I					1												L		L	
Pattern	1			1	· .	1	1	1	1	1	1	1		1	r	1	1				
Channel Beltwidth (ft		12 20		157	N/A	28	50	38	41	10	50	10		16	74	20	93	20	68	34	72
Radius of Curvature (ft		6 18		86	N/A	19	50	11	15	12	85	23	38	18	31	23	38	18	26	23	38
Rc:Bankfull Width (ft/ft	N/A	0.8 2.		10.9	N/A	2.0	5.3	1.3	1.4	1.9	9.1	2.0	3.1	1.8	3.0	1.8	3.0	1.8	2.5	1.9	2.8
Meander Length (ft		27 45		260	N/A					53	178			31	151	38	192	70	120	97	160
Meander Width Ratio)	1.5 2.	6.1	19.9	N/A	3.0	5.3	3.4	3.6	1.6	5.4	8.3	8.9	1.6	7.3	1.6	7.3	2.0	6.5	2.9	5.3
Substrate, Bed and Transport Parameters																					
Ri%/Ru%/P%/G%/S%																					
SC%/Sa%/G%/C%/B%/Be%																					
d16/d35/d50/d84/d95/d10	N/A	0.33/1.88/3.47 45.0/117/256		3.2/14.6/ 34/>2048									-					SC/ S 41.3/79	C/SC/ .2/128.0	SC/SC 45.0/104	
Reach Shear Stress (Competency) lb/ft	2	0.43	:	26										0.	.49	C	.63	0.	38	0.	.56
Max part size (mm) mobilized at bankful	1																				
Stream Power (Capacity) W/m	2																				
Additional Reach Parameters	I	I								1								-		L	
		0.05			0.45								20		25				25		
Drainage Area (SM		0.25		.56 :1%	0.15		.41		.96		.37	0.2			.25 1%		.56 :1%		25 1%		.56 1%
Watershed Impervious Cover Estimate (%																					-
Rosgen Classification	1	G4		l, G4	B3		E4		E4		E4	C4/			4		C4	-	4	-	4
Bankfull Velocity (fps		2.7	1.7	5.7	4.9	2.2	3.5	4.9	5.4	5.0	5.6	3.			5-5		.5-5	2.6	3.4	3.3	3.6
Bankfull Discharge (cfs	4	14		129	37		20	-	97		35	4	U	2	5.0	4	6.0	17.0	30.9	30.3	42.9
Q-NFF regression																					
Q-USGS extrapolation	N/A																			<u> </u>	
Q-Manning																					
Valley Length (ft	1														07		232	-			
Channel Thalweg Length (ft		1,132		417											114	,	488	1,1		1,5	
Sinuosit	(1.14	:	24	1.04		.40		.32	1.00	1.30	1.4		1.20	1.30	1.20	1.30		20		.22
Water Surface Slope (ft/ft)														-				0.0			122
Bankfull Slope (ft/ft	1	0.0093 0.01	0.0005	0.0130	0.0490	0.0	0120	1 0.0	0047	0.0190	0.0220	0.0	150	0.0070	0.0150	0.0054	0.0172	0.0	096	0.0	104

(---): Data was not provided N/A: Not Applicable

Table 10b. Baseline Stream Data Summary

Agony Acres Mitigation Site (DMS Project No. 95716) Monitoring Year 2 - 2016

UT1A PRE-RESTORATION CONDITION

Parameter	Gage	UT1A ·	· Reach 1	UT1A -	Reach 4	Onsite Reference Reach - UT1A - Reach 3		Polecat eek	Spencer	r Creek 1	Spencer	r Creek 2	UT To Ca	ne Creek	UT1A -	Reach 1	UT1A -	Reach 4	UT1A -	Reach 1	UT1A -	Reach 4
						Min Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max
Dimension and Substrate - Riffle	1	1		1			1	1	1	1	1	1	1	-	1		r		1		1	
Bankfull Width (ft)			5.8	9	.3 80	11.1	5.3	10.9	10.7	11.2	6.3	9.3	11.5	12.3		.0		8.2		.0		3.1
Floodprone Width (ft))		15 1.1	> 1		25 0.7	25 1.0	65 1.1	60	>114	14 0.8	125	0.8	1	18	40	18	41		50 1.5		200 D.6
Bankfull Mean Depth Bankfull Max Depth	1		1.1	1		1.0	1.0	1.1	1.6 2.1	1.8 2.6	0.8	1.0 1.2	0.8	1.0	0.7	0.9	0.8	1.0		.9		1.8
				1		7.4												1.0		.0		5.0
Bankfull Cross Sectional Area (ft ²)	N/A		6.3				5.4	12.4	17.8	19.7	6.6	8.7	8.9	12.2		.8						
Width/Depth Ratio			5.3		.0	16.6	5.2	9.6	5.8	7.1	7.9	9.3	12.3	14.4		3.4		3.6		5.9		3.2
Entrenchment Ratio	0		2.6		3.6	2	3.2	8.3	5.5	>10.2	1.7	4.3		2.5	2.2	5.0	2.2	5.0		.3		4.8
Bank Height Ratio	-		1.7		.5 06	1.0	1.0	1.1	1	.0	1.0	1.0			1.0	1.0	1.0	1.0		.0		.25
D50 (mm))	2	1.31	5.	06														1.	41	0	25
Profile						1			-												-	
Riffle Length (ft)				1							· ·		-		-				15.5	42.0	20.5	51.9
Riffle Slope (ft/ft)	-			-	-	N/A	0.0040	0.0470		130	0.0184	0.0343	0.0188	0.0704	0.0148	0.0453	0.0212	0.0652	0.0077	0.0505	0.0109	0.0449
Pool Length (ft)	N/A	-													-				5.4	52.2	9.1	35.5
Pool Max Depth (ft)	,		1.8		.6	1.6		L.8		1.3	1.2	1.8		.6	0.7	2.4	0.7	2.5	1.6	3.5	1.4	3.1
Pool Spacing (ft))			-		N/A	34	52	7	71	9	46	27	73	10	53	11	54	20	85	45	82
Pool Volume (ft ³)																						
Pattern																						
Channel Beltwidth (ft)		30	35	N/A	N/A	N/A	28	50	38	41	10	50	1	02	13	58	13	60	24	60	35	55
Radius of Curvature (ft)		12	57	N/A	N/A	N/A	19	50	11	15	12	85	23	38	14	24	15	25	14	23	15	23
Rc:Bankfull Width (ft/ft)	N/A	1.5	7.2	N/A	N/A	N/A	2.0	5.3	1.3	1.4	1.9	9.1	2.0	3.1	1.8	3.0	1.8	3.0	1.8	2.9	1.9	2.8
Meander Length (ft))	89	104	N/A	N/A	N/A	-				53	178			24	120	25	123	70	112	96	117
Meander Width Ratio)	3.8	4.4	N/A	N/A	N/A	3.0	5.3	3.4	3.6	1.6	5.4	8.3	8.9	1.6	7.3	1.6	7.3	3.0	7.5	4.3	6.8
Substrate, Bed and Transport Parameters																						
Ri%/Ru%/P%/G%/S%	5					1																-
SC%/Sa%/G%/C%/B%/Be%																						
d16/d35/d50/d84/d95/d100			.18/4.31/ 39/256	0.45/2. 67.7/1			-		-				-						SC/SC 33.4/64	/1.41/ .0/128.0		C/0.25/ 5.9/180.0
Reach Shear Stress (Competency) lb/ft	2	0).50	1.	76										0.	48	0	.54	0.	38	0	.49
Max part size (mm) mobilized at bankful	ī																					
Stream Power (Capacity) W/m ²	2																					-
Additional Reach Parameters				1							1		1									
Drainage Area (SM)	1).12	0.	16	0.15	0	.41	0	.96	0	.37	0	29	0.	12	0	.16	0	12	0	.16
Watershed Impervious Cover Estimate (%)	H		:1%		10			.41								12		1%		1%		1%
Rosgen Classification	1		E4	E		B3		E4		4		4		/E4		4		24		24		C4
Bankfull Velocity (fps)	1		3.3	5		4.9	2.2	3.5	4.9	5.4	5.0	5.6		.8	2.			5-5				3.0
Bankfull Discharge (cfs)			21		0	37		20	-	97 97		5.0		0		1.0		7.0		5.9		5.0
Q-NFF regression															_				_		-	-
Q-USGS extrapolation		-																				
Q-Mannings	,					1																-
Valley Length (ft)	7			-			-						-	-	6	73	5	30				
Channel Thalweg Length (ft)	7	:	770	4	51		-		-		1 .		-	-		49		50	8	57	6	66
Sinuosity	<i>,</i>		.12		03	1.04	1.	.40	2.	.32	1.00	1.30	1.	40	1.20	1.30	1.20	1.30		21		.25
Water Surface Slope (ft/ft)	2	 		-	-		-		-		1 .		-	-					0.0	126	N	I/A
Bankfull Slope (ft/ft)	1	0.	0095	0.0	150	0.0490	0.0	0120	0.0	047	0.0190	0.0220	0.0	150	0.0103	0.0175	0.0141	0.0153	0.0	137		0129
(): Data was not provided		. <u> </u>				1	· · · · ·															

REFERENCE REACH DATA

DESIGN

AS-BUILT/BASELINE

(---): Data was not provided N/A: Not Applicable

Table 10c. Baseline Stream Data Summary

Agony Acres Mitigation Site (DMS Project No. 95716) Monitoring Year 2 - 2016

		PR RESTOR				RE	FERENCE	REACH D	ATA				DES	IGN		UILT/ ELINE
Parameter	Gage	UT	1B	Onsite Reference Reach - UT1A - Reach 3	UT to	Polecat eek	Spencer	Creek 1	Spencer	Creek 2	UT To C	ane Creek	וט	⁻ 1B		Г1В
				Min Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max
Dimension and Substrate - Riffle																
Bankfull Width (ft)		4.	9	11.1	5.3	10.9	10.7	11.2	6.3	9.3	11.5	12.3	7	.3	7	7.7
Floodprone Width (ft)		3	6	25	25	65	60	>114	14	125		31	16	37	7	70
Bankfull Mean Depth		1.	1	0.7	1.0	1.1	1.6	1.8	0.8	1.0	0.8	1.0	C	.6	C).5
Bankfull Max Depth		1.	9	1.0	1.4	1.7	2.1	2.6	1.0	1.2	1.2	1.6	0.7	0.9	C).7
Bankfull Cross Sectional Area (ft ²)	N/A	5.	4	7.4	5.4	12.4	17.8	19.7	6.6	8.7	8.9	12.2	5	.2	3	3.5
Width/Depth Ratio		4.	4	16.6	5.2	9.6	5.8	7.1	7.9	9.3	12.3	14.4	1	2.6	1	7.0
Entrenchment Ratio		7.	5	2.3	3.2	8.3	5.5	>10.2	1.7	4.3	>	2.5	2.2	5.0	S	9.1
Bank Height Ratio		1.	6	1.0	1.0	1.1	1	.0	1.0	1.0			1.0	1.0	1	1.0
D50 (mm)			-			-								-	Silt,	/Clay
Profile				•												
Riffle Length (ft)					1		-		-						12.1	24.4
Riffle Slope (ft/ft)			-	N/A	0.0040	0.0470	0.0	130	0.0184	0.0343	0.0188	0.0704	0.0222	0.0680	0.0219	0.04
Pool Length (ft)							-	-	-	-					11.9	30.
Pool Max Depth (ft)	N/A	2.	5	1.6	1	L.8	3	.3	1.2	1.8		2.6	0.7	2.4	1.7	2.5
Pool Spacing (ft)			-	N/A	34	52	7	1	9	46	27	73	9	48	30	45
Pool Volume (ft ³)																
Pattern															1	
Channel Beltwidth (ft)		N/A	N/A	N/A	28	50	38	41	10	50		.02	12	53	25	40
Radius of Curvature (ft)		N/A N/A	N/A N/A		28	50	38	41	10	85	23	38	12	22	14	
Rc:Bankfull Width (ft/ft)	N/A	N/A N/A	N/A N/A	N/A N/A	2.0	5.3	1.3	1.4	1.9	9.1	2.0	3.1	1.8	3.0	14	20
Meander Length (ft)	N/A	N/A N/A	N/A	N/A N/A	2.0	5.5		1.4	53	9.1	2.0		22	110	60	_
Meander Length (11) Meander Width Ratio		N/A N/A	N/A N/A	N/A N/A	3.0	5.3	3.4	3.6	1.6	5.4	8.3	8.9	1.6	7.3	3.2	72
		N/A	N/A	N/A	3.0	5.5	3.4	3.0	1.0	5.4	8.3	8.9	1.0	7.3	3.2	5.4
ubstrate, Bed and Transport Parameters					-		1				1					
Ri%/Ru%/P%/G%/S%																
SC%/Sa%/G%/C%/B%/Be%																
d16/d35/d50/d84/d95/d100	N/A		-				-		-	-						C/SC/ 0.2/90.0
Reach Shear Stress (Competency) lb/ft ²			-												0.	.21
Max part size (mm) mobilized at bankfull																
Stream Power (Capacity) W/m ²																
dditional Reach Parameters																
Drainage Area (SM)		0.	10	0.15	0	.41	0.	96	0.	37	0	.29	0	10	0	.10
Watershed Impervious Cover Estimate (%)		<1	%				-		-				<	1%	<	1%
Rosgen Classification		E	4	B3	1	E4	E	4	E	4	C4	1/E4	(24	(C4
Bankfull Velocity (fps)		4.	6	4.9	2.2	3.5	4.9	5.4	5.0	5.6	-	3.8	1.	5-4	1	1.9
Bankfull Discharge (cfs)		2	5	37		20	9	7	3	5		40		1	e	5.6
Q-NFF regression			-													
Q-USGS extrapolation	N/A		-													
Q-Mannings			-													
Valley Length (ft)			-				-		-				1	99		
Channel Thalweg Length (ft)		24	3				-		-				2	19	2	32
Sinuosity		1.0	06	1.04	1	.40	2.	32	1.00	1.30	1	.40	1.20	1.30	1.	.34
Water Surface Slope (ft/ft) ²			-				-		-						0.0	0095
Bankfull Slope (ft/ft)		0.03	200	0.0490	0.0	0120	0.0	047	0.0190	0.0220	0.0	0150	0.0100	0.0200	0.0	0181

(---): Data was not provided N/A: Not Applicable

Table 10d. Baseline Stream Data Summary

Agony Acres Mitigation Site (DMS Project No. 95716) Monitoring Year 2 - 2016

			RE- RATION				RE	FERENCE	REACH D	ATA				DES	IGN		UILT/ ELINE
Parameter	Gage	U	T2	Re UT1A -	Reference ach - Reach 3	Cro	Polecat eek	Spencer			Creek 2		ane Creek		т2		т2
				Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max
imension and Substrate - Riffle																	
Bankfull Width (ft)		6.2	9.6		.1.1	5.3	10.9	10.7	11.2	6.3	9.3	11.5	12.3		.6		5.7
Floodprone Width (ft)		>	20		25	25	65	60	>114	14	125	3	31	15	33		50
Bankfull Mean Depth		0.6	1.1		0.7	1.0	1.1	1.6	1.8	0.8	1.0	0.8	1.0		.5).5
Bankfull Max Depth		1.0	2.0		1.0	1.4	1.7	2.1	2.6	1.0	1.2	1.2	1.6	0.6	0.8	0).7
Bankfull Cross Sectional Area (ft ²)	N/A	5.2	7.0		7.4	5.4	12.4	17.8	19.7	6.6	8.7	8.9	12.2	3	.4	3	3.4
Width/Depth Ratio		5.5	15.5	1	.6.6	5.2	9.6	5.8	7.1	7.9	9.3	12.3	14.4	11	2.8	12	2.9
Entrenchment Ratio		>	2.4		2.3	3.2	8.3	5.5	>10.2	1.7	4.3	>	2.5	2.2	5.0	7	7.5
Bank Height Ratio		1.0	2.1		1.0	1.0	1.1	1	.0	1.0	1.0			1.0	1.0		L.O
D50 (mm)		2.	11													Silt/	/Clay
rofile																	
Riffle Length (ft)						-		-		-				-		13.9	51.7
Riffle Slope (ft/ft)		-		1	N/A	0.0040	0.0470	0.0	130	0.0184	0.0343	0.0188	0.0704	0.0179	0.0549	0.0146	0.052
Pool Length (ft)						-		-		-				-		10.0	28.4
Pool Max Depth (ft)	N/A	1	.4		1.6	1	.8	3	.3	1.2	1.8	2	2.6	0.6	2.1	1.0	2.4
Pool Spacing (ft)		-		1	N/A	34	52	7	'1	9	46	27	73	9	44	25	66
Pool Volume (ft ³)							•										
attern																	
					. / 4								.02				1
Channel Beltwidth (ft)		32	54		N/A	28	50	38	41	10	50			11	48	19	50
Radius of Curvature (ft)		12	43		N/A	19	50	11	15	12	85	23	38	12	20	12	20
Rc:Bankfull Width (ft/ft)	N/A	1.5	5.4		N/A	2.0	5.3	1.3	1.4	1.9	9.1	2.0	3.1	1.8	3.0	1.8	3.0
Meander Length (ft)		102	103		N/A					53	178			20	99	58	98
Meander Width Ratio		4.1	6.8	r	N/A	3.0	5.3	3.4	3.6	1.6	5.4	8.3	8.9	1.6	7.3	2.8	7.5
ubstrate, Bed and Transport Parameters						-				-		-				-	
Ri%/Ru%/P%/G%/S%																	
SC%/Sa%/G%/C%/B%/Be%																	
d16/d35/d50/d84/d95/d100	N/A	0.2/0.6	8/2.11/ 8.3/256													SC/S 30.2/64	C/SC/ .0/128.0
Reach Shear Stress (Competency) lb/ft ²		-												-		0.	.64
Max part size (mm) mobilized at bankfull																	
Stream Power (Capacity) W/m ²																	
dditional Reach Parameters																	
Drainage Area (SM)		0	09		0.15	0	41	0	96	0.	37	0	.29	0	09	0	.09
Watershed Impervious Cover Estimate (%)			L%							-					1%		1%
Rosgen Classification			4		B3		4		4		4		I/E4		24		24
Bankfull Velocity (fps)		3.0	5.1		4.9	2.2	3.5	4.9	5.4	5.0	5.6		3.8		5-5		3.4
Bankfull Discharge (cfs)			3		37		10		7		5		40		1.0		1.5
Q-NFF regression					-	-	<u>.</u>				-						-
	N/A																
O-USGS extranolation	14/4																
Q-USGS extrapolation				1													
Q-Mannings						-				-				۵	05	-	
Q-Mannings Valley Length (ft)															05		
Q-Mannings Valley Length (ft) Channel Thalweg Length (ft)		- 1,0	028								-			1,0	023	1,0	032
Q-Mannings Valley Length (ft)		1,0		1		- 1.		- 2.		1.00		1		1,0 1.20		1,0	

(---): Data was not provided N/A: Not Applicable

Table 11. Morphology and Hydraulic Summary (Dimensional Parameters - Cross Section)

Agony Acres Mitigation Site (DMS Project No. 95716)

Monitoring Year 2 - 2016

																UT1 R	each 2															
			Cros	ss Secti	on 1 (R	iffle)					Cro	ss Secti	on 2 (P	ool)					Cros	ss Sectio	on 3 (Ri	iffle)					Cro	ss Secti	ion 4 (P	ool)		
Dimension and Substrate	Base	MY1	MY2	MY3	MY4	MY5	MY6	MY7	Base	MY1	MY2	MY3	MY4	MY5	MY6	MY7	Base	MY1	MY2	MY3	MY4	MY5	MY6	MY7	Base	MY1	MY2	MY3	MY4	MY5	MY6	MY7
based on fixed bankfull elevation (ft)	651.7	651.7	651.7						651.0	651.0	651.0						644.0	644.0	644.0						643.6	643.6	643.6					
Bankfull Width (ft)	10.4	9.9	10.5						9.6	9.3	9.3						10.6	10.2	9.7						13.5	13.7	12.9					
Floodprone Width (ft)	100	100	100						N/A	N/A	N/A						60	60	60						N/A	N/A	N/A					
Bankfull Mean Depth (ft)	0.9	0.8	0.7						1.2	1.1	1.2						0.6	0.6	0.5						1.1	1.0	1.0					
Bankfull Max Depth (ft)	1.4	1.4	1.4						2.1	1.9	2.0						1.1	1.1	1.1						1.9	1.8	1.9					
Bankfull Cross Sectional Area (ft ²)	9.0	8.0	7.8						11.6	10.4	11.2						6.2	6.2	5.3						14.7	14.2	13.3					
Bankfull Width/Depth Ratio	12.0	12.2	14.2						7.9	8.3	7.7						18.2	16.7	17.7						12.4	13.2	12.5					
Bankfull Entrenchment Ratio	9.6	10.1	9.5						N/A	N/A	N/A						5.6	5.9	6.2						N/A	N/A	N/A					
Bankfull Bank Height Ratio	1.0	1.0	1.0						1.0	1.0	1.0						1.0	1.0	1.0						1.0	1.0	1.0					
d50 (mm)	18.0	64.0	10.4						N/A	N/A	N/A						13.3	46.6	22.6						N/A	N/A	N/A			├ ──		
uso (mm)	10.0	04.0	10.4		1	I			N/A	N/A	IN/A					LIT1 D	each 5	40.0	22.0	II					N/A	N/A	IN/A			·		I
			0		F /D	1)					0		C (D)	(CI -)		UTIK	each 5		C			(CI -)					0		0 /0	1)		
					ion 5 (P							ss Secti								ss Sectio									ion 8 (P			
Dimension and Substrate	Base	MY1	MY2	MY3	MY4	MY5	MY6	MY7	Base	MY1	MY2	MY3	MY4	MY5	MY6	MY7	Base	MY1	MY2	MY3	MY4	MY5	MY6	MY7	Base	MY1		MY3	MY4	MY5	MY6	MY7
based on fixed bankfull elevation (ft)	610.4	610.4	610.4			L			610.0	610.0	610.0						600.9	600.9	600.9						600.6	600.6	600.6			\vdash		<u> </u>
Bankfull Width (ft)	15.9	16.5	16.7						15.3	15.2	16.0						11.9	11.9	11.8						15.2	15.7	16.1					L
Floodprone Width (ft)	N/A	N/A	N/A						200	200	200						200	200	200						N/A	N/A	N/A					
Bankfull Mean Depth (ft)	1.2	1.1	1.2						0.8	0.8	0.8						0.8	0.8	0.8						1.4	1.4	1.3					
Bankfull Max Depth (ft)	2.4	2.2	2.4						1.6	1.7	1.8						1.3	1.5	1.4						2.7	2.8	2.8					
Bankfull Cross Sectional Area (ft ²)	18.5	18.1	19.3						12.0	12.6	12.5						9.1	10.1	9.3						21.3	21.8	21.1			1		
Bankfull Width/Depth Ratio	13.6	15.1	14.4						19.5	18.4	20.5						15.7	14.0	14.9						10.9	11.3	12.3					
Bankfull Entrenchment Ratio	N/A	N/A	N/A						13.1	13.1	12.5						16.8	16.8	17.0						N/A	N/A	N/A					
Bankfull Bank Height Ratio	1.0	1.0	1.0						1.0	1.0	1.0						1.0	1.0	1.0						1.0	1.0	1.0					
d50 (mm)	N/A	N/A	N/A						15.4	30.8	57.9						16.0	52.1	70.5						N/A	N/A	N/A					
								UT1A F	Reach 1															UT1A F	Reach 4							
			Cros	ss Secti	on 9 (R	iffle)					Cros	s Sectio	on 10 (F	Pool)					Cros	s Sectio	n 11 (R	tiffle)					Cros	s Sectio	on 12 (F	Pool)		
Dimension and Substrate	Base	MY1	MY2	MY3	MY4	MY5	MY6	MY7	Base	MY1	MY2	MY3	MY4	MY5	MY6	MY7	Base	MY1	MY2	MY3	MY4	MY5	MY6	MY7	Base	MY1	MY2	MY3	MY4	MY5	MY6	MY7
based on fixed bankfull elevation (ft)	656.4	656.4	656.4						656.0	656.0	656.0						615.8	615.8	615.8						615.1	615.1	615.1					
Bankfull Width (ft)	8.0	7.3	7.2						10.5	10.0	10.2						8.1	8.2	8.2						10.6	10.5	10.5					
Floodprone Width (ft)	50	50	50						N/A	N/A	N/A						200	200	200						N/A	N/A	N/A					
Bankfull Mean Depth (ft)	0.5	0.5	0.5						0.7	0.7	0.7						0.6	0.8	0.8						1.2	1.2	1.2					
Bankfull Max Depth (ft)	0.9	0.9	0.8						1.5	1.2	1.3						1.8	1.9	1.9						2.7	2.6	2.6					
Bankfull Cross Sectional Area (ft ²)	4.0	3.9	3.8						7.8	7.0	6.7						5.0	6.6	6.5						12.3	13.2	13.1					
Bankfull Width/Depth Ratio	15.9	13.7	13.8						14.1	14.4	15.5						13.2	10.1	10.4						9.1	8.4	8.4					
Bankfull Entrenchment Ratio	6.3	6.8	6.9						N/A	N/A	N/A						24.8	24.4	24.4						N/A	N/A	N/A					
Bankfull Bank Height Ratio	1.0	1.0	1.0						1.0	1.0	1.0						1.0	1.0	1.0						1.0	1.0	1.0					
d50 (mm)	18.0	17.8	25.2						N/A	N/A	N/A						18.3	42.1	28.5						N/A	N/A	N/A					
,								UT																U.	T2		,					
			Cros	s Sectio	on 13 (R	Riffle)	_			_	Cros	s Sectio	on 14.(I	ool)	_			_	Cros	s Sectio	n 15 (R	iffle)	_	_	_	_	Cros	s Sectio	on 16 (F	Pool)	_	_
Dimension and Substrate	Base	MY1	MY2	MY3		MY5	MY6	MY7	Base	MY1	MY2		MY4		MY6	MY7	Base	MY1	MY2	MY3			MY6	MY7	Base	MY1	MY2				MY6	MY7
based on fixed bankfull elevation (ft)	647.1	647.1	647.1		1	1			646.9	646.9	646.9						602.9	602.9	602.9						602.4	602.4	602.4					
Bankfull Width (ft)	7.7	7.8	7.7		1	1			9.7	10.1	9.8						7.1	7.0	6.8				1		9.5	9.5	9.9			<u> </u>		1
Floodprone Width (ft)	70	7.8	70						9.7 N/A	N/A	N/A						50	50	50						9.5 N/A	N/A	N/A			<u>├</u>		+
Bankfull Mean Depth (ft)	0.5	0.5	0.4						0.8	0.7	0.7						0.5	0.5	0.5						0.6	0.6	0.6			┼──┼		-
Bankfull Max Depth (ft)	0.7	0.9	0.4		1				1.4	1.3	1.4						0.7	0.9	0.9						1.3	1.3	1.3			┼──┼		
Bankfull Cross Sectional Area (ft ²)	3.5	3.6	3.2			 			7.8	7.2	7.2						3.4	3.8	3.5						5.8	5.5	5.8			┝──┤		+
		3.6	3.2														3.4		3.5				<u> </u>		5.8	16.3				—		
Bankfull Width/Depth Ratio	17.0					<u> </u>			12.1	14.2	13.5							12.9					<u> </u>				16.8			—		
Bankfull Entrenchment Ratio Bankfull Bank Height Ratio	9.1	9.0 1.0	9.1			<u> </u>			N/A	N/A	N/A 1.0						7.0	7.2	7.3				<u> </u>		N/A	N/A 1.0	N/A 1.0			—		
	1.0		1.0		1	1			1.0	1.0													1		1.0							1
d50 (mm)		43.9	26.9		_				N/A	N/A	N/A						19.7	25.0	23.5						N/A	N/A	1.0 N/A			<u> </u>		

Table 12a. Monitoring Data - Stream Reach Data Summary Agony Acres Mitigation Site (DMS Project No. 95716) Monitoring Year 2 - 2016

UT1 Reach 2

Parameter	As-Built	/Baseline	N	IY1	N	1Y2		MY3	N	1Y4	N	1Y5	M	IY6	N	AY7
	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max
Dimension and Substrate - Riffle																
Bankfull Width (ft)	10.2	10.4	9.9	10.2	9.7	10.5										
Floodprone Width (ft)	60	100	60	100	60	100										
Bankfull Mean Depth	0.6	0.9	0.6	0.8	0.5	0.7										
Bankfull Max Depth	1.1	1.4	1.1	1.4	1.1	1.4										
Bankfull Cross Sectional Area (ft ²)	6.2	9.0	6.2	8.0	5.3	7.8										
Width/Depth Ratio	12.0	16.8	12.2	16.7	14.2	17.7										
Entrenchment Ratio	5.9	9.6	5.9	10.1	6.2	9.5										
Bank Height Ratio	1	L.O	1	.0		1.0										
D50 (mm)	13.3	18.0	46.6	64.0	10.4	22.6										
Profile																
Riffle Length (ft)	13.9	73.2														
Riffle Slope (ft/ft)	0.0078	0.0317														
Pool Length (ft)	17.2	42.8														
Pool Max Depth (ft)	1.6	3.7														
Pool Spacing (ft)	31	78														
Pool Volume (ft ³)																
Pattern																
Channel Beltwidth (ft)	20	68														
Radius of Curvature (ft)	18	26														
Rc:Bankfull Width (ft/ft)	1.8	2.5														
Meander Wave Length (ft)	70	120														
Meander Width Ratio	2.0	6.5														
Additional Reach Parameters																
Rosgen Classification	1	C4														
Channel Thalweg Length (ft)	1,	137														
Sinuosity (ft)	1	1.2														
Water Surface Slope (ft/ft)	0.0	0111														
Bankfull Slope (ft/ft)	0.0	0096														
Ri%/Ru%/P%/G%/S%																
SC%/Sa%/G%/C%/B%/Be%																
d16/d35/d50/d84/d95/d100	SC/SC/SC/41	3/79.2/128.0	SC/0.28/9.9/9	3.6/145.5/180.0	0.56\2.57\4.8\	64.0\117.2\512.0										
% of Reach with Eroding Banks	()%	()%	(0%										

Table 12b. Monitoring Data - Stream Reach Data Summary Agony Acres Mitigation Site (DMS Project No. 95716) Monitoring Year 2 - 2016

UT1 Reach 5

Parameter	As-Built/Baseline		MY1 MY2			MY3		MY4		MY5		MY6		MY7		
Parameter	Min	Max	Min	Max	Min	Max	Min	Max		Min Max		Max	Min Max		Min Max	
Dimension and Substrate - Riffle	IVIIII	IVIdX	IVIIII	IVIdX	IVIIII	IVIdX	IVIIII	IVIdX	IVIIII	IVIdX	Min	IVIdX	IVIIII	IVIdX	IVIIII	IVIdX
Bankfull Width (ft)	11.9	13.6	11.9	15.2	11.8	16.0										1
Floodprone Width (ft)																
			200		200			1								1
Bankfull Mean Depth	0.8	0.9	0.8	0.8	0.8	0.8										
Bankfull Max Depth	1.3	1.6	1.5	1.7	1.4	1.8										
Bankfull Cross Sectional Area (ft ²)	9.1	11.9	10.1	12.6	9.3	12.5										
Width/Depth Ratio	15.5	15.7	14.0	18.4	14.9	20.5										
Entrenchment Ratio	14.7	16.8	13.1	16.8	12.5	17.0										
Bank Height Ratio		.0				0										
D50 (mm)	15.4	16.0	30.8	52.1	57.9	70.5										
Profile																
Riffle Length (ft)	23.7	81.3														
Riffle Slope (ft/ft)	0.0090	0.0304														
Pool Length (ft)	17.6	76.6														
Pool Max Depth (ft)	2.0	4.9														
Pool Spacing (ft)	35	103														
Pool Volume (ft ³)																
Pattern		•		•						•						
Channel Beltwidth (ft)	34	72														
Radius of Curvature (ft)	23	38														
Rc:Bankfull Width (ft/ft)	1.9	2.8														
Meander Wave Length (ft)	97	160														
Meander Width Ratio	2.9	5.3														
Additional Reach Parameters				•						•						
Rosgen Classification		24														
Channel Thalweg Length (ft)	1,	535														
Sinuosity (ft)		.2											1			
Water Surface Slope (ft/ft)		122														
Bankfull Slope (ft/ft)		104														
Ri%/Ru%/P%/G%/S%												1				1
SC%/Sa%/G%/C%/B%/Be%												1				1
d16/d35/d50/d84/d95/d100	SC/SC/0.11/45	0/104.7/180.0	SC\4.47\20.1\7	4.9\128.0\362.0	0.18\4.00\20.7\	75.9\139.4\512.0										1
% of Reach with Eroding Banks		10/104.7/100.0 1%		9.5 (128.8 (582.8)%		0%							1			
76 GENERACH WITH ELOUING BAIKS	KS U%			0%				I						I		

Table 12c. Monitoring Data - Stream Reach Data Summary Agony Acres Mitigation Site (DMS Project No. 95716) Monitoring Year 2 - 2016

UT1A Reach 1

<table-container> Image <t< th=""><th>Parameter</th><th colspan="2">As-Built/Baseline</th><th></th><th>MY1</th><th>N</th><th colspan="2">MY2</th><th colspan="2">MY3</th><th colspan="2">MY4</th><th colspan="2">MY5</th><th colspan="2">MY6</th><th>MY7</th></t<></table-container>	Parameter	As-Built/Baseline			MY1	N	MY2		MY3		MY4		MY5		MY6		MY7
	Falalletei				-												
	Discoursion and Substants Diffle	IVIIN	IVIAX	IVIIN	IVIAX	IVIIN	IVIAX	IVIIN	IVIAX	IVIIN	IVIAX	IVIIN	IVIAX	IVIIN	IVIAX	IVIIN	IVIAX
$ \begin{array}{ c c c c c } \hline \begin{tabular}{ c c c } \hline c c c c c c c c c c c c c c c c c c $					7.0		7.0										
Bahdul Max Orghn 0.9 0.9 0.8 I																	
High Ratio 15.9 13.7 13.8 Image: Second Seco																	
														<u></u>			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$																	
rofile Image: Second Seco																	
Riffie Length (ft) 15.5 41.97 0.0505 Image: constraint of the second seco		1	18.0		17.8	2	5.2										
Rifle Slope (fr/ft) 0.077 0.0505 employee																	
Pool length (ft) 5.4 52.2 Image: constraint of the sector of the s																	
Pool Max Depth (f) 1.6 3.5 Image: Construction of the constructing the construction of the construction of the constructing the c	Riffle Slope (ft/ft)	0.0077	0.0505														
$ \begin{array}{ c c c c c c c c c c } \hline \begin black \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	Pool Length (ft)	5.4	52.2														
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Pool Max Depth (ft)	1.6	3.5														
Pattern Image: Chanel Belwidth (t) 24 60 Image: Chanel Belwidth (t) 23 Image: Chanel Belwidth (t) 14 23 Image: Chanel Belwidth (t) 18 2.9 Image: Chanel Belwidth (t) 17 112 Image: Chanel Belwidth (t) 17 112 Image: Chanel Belwidth (t) 17 112 Image: Chanel Belwidth (t) 17 18 <th< td=""><td>Pool Spacing (ft)</td><td>20</td><td>85</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>	Pool Spacing (ft)	20	85														
Channel Beltwidth (t) 24 60 Image: Constant (t) 14 23 Image: Constant (t) 16 Image: Constant (t) 1 Image: Constant (t) Image:	Pool Volume (ft ³)																
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Pattern																
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Channel Beltwidth (ft)	24	60														
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Radius of Curvature (ft)	14	23														
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Rc:Bankfull Width (ft/ft)	1.8	2.9														
Additional Reach Parameters Image: Constriction C4 Image: Constriction Canadity and the stress of	Meander Wave Length (ft)	70	112														
Rosgen Classification C4 C4 <t< td=""><td>Meander Width Ratio</td><td>3.0</td><td>7.5</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	Meander Width Ratio	3.0	7.5														
Channel Thalweg Length (t) 857 Image: Channel Thalweg Length (t) 857 Image: Channel Thalweg Length (t) 857 Image: Channel Thalweg Length (t) 0.012 Image: Channel Thalweg Length (t) 0.0126 Image: Channel Thalweg Length (t) 0.0126 Image: Channel Thalweg Length (t) 0.0137 Image: Channel Thalweg Length (t) 0.0137 Image: Channel Thalweg Length (t) 0.0137 Image: Channel Thalweg Length (t) Image: Channel Thalwe	Additional Reach Parameters																
Sinussity (t) 1.2 Image: Constraint of the system of	Rosgen Classification		C4														
Sinuosity (ft) 1.2 Image: Constraint of the system of	Channel Thalweg Length (ft)	Ę	857														
Water Surface Slope (h/t) 0.0126 Image: Constraint of the state of the sta																	
Bankfull Slope (ft/ft) 0.0137 Image: Constraint of the state of t		0.0	0126														
R%/Ru%/P%/G%/S% Image: Constraint of the con																	
SC%/s3%/G%/C%/B%/Be% Image: Constraint of the constraint of th										1		1			1	1	
d16/d35/d50/d84/d95/d100 SC/SC/1.41/33.4/64.0/128.0 0.16\2.24\11.0\42.0\73.4\180.0 0.50\6.01\15.2\52.1\75.9\512.0										1					1		
		SC/SC/1.41/3	3.4/64.0/128.0	0.16\2.24\11	0.16\2.24\11.0\42.0\73.4\180.0		0.50\6.01\15.2\52.1\75.9\512.0										
% of Reach with Eroding Banks 0% 0% 0%	% of Reach with Eroding Banks																

Table 12d. Monitoring Data - Stream Reach Data Summary Agony Acres Mitigation Site (DMS Project No. 95716)

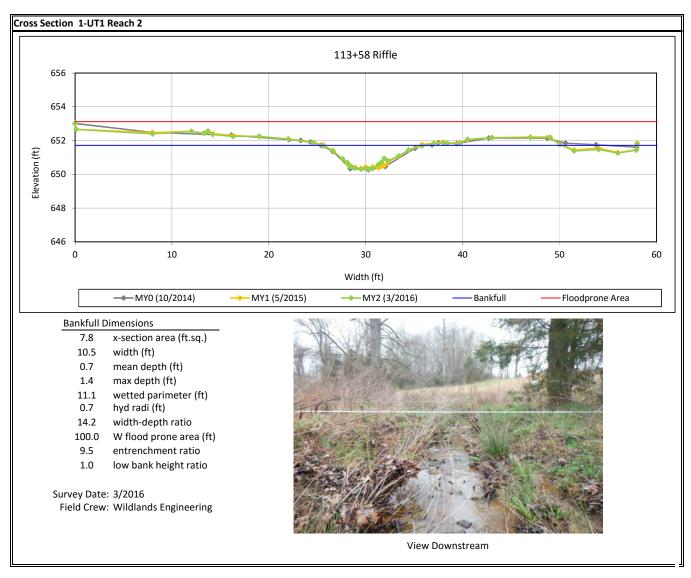
Monitoring Year 2 - 2016

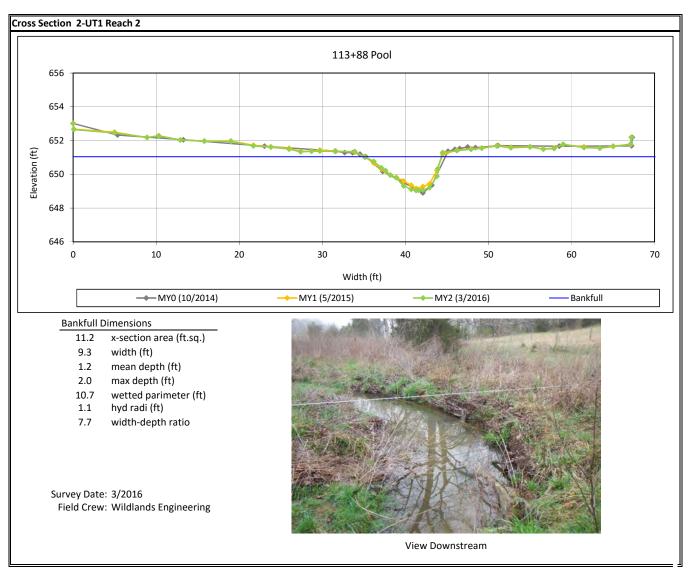
UT1A Reach 4																
Parameter	As-Built	As-Built/Baseline MY1		IY1	N	1Y2	Ν	/IY3		MY4		MY5		MY6	N	AY7
	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max
Dimension and Substrate - Riffle																
Bankfull Width (ft)	5	8.1		3.2	8	3.2										
Floodprone Width (ft)	2	200	2	.00	2	.00										
Bankfull Mean Depth		D.6	().8	().8										
Bankfull Max Depth		1.8		9	1	L.9										
Bankfull Cross Sectional Area (ft ²)		5.0		5.6		5.5										
Width/Depth Ratio	1	.3.2	1	0.1	1	0.4										
Entrenchment Ratio	2	4.8	2	4.4	2	4.4										
Bank Height Ratio		1.0		1.0	1	L.O										
D50 (mm)	1	.8.3	4	2.1	2	8.5										
Profile																
Riffle Length (ft)	20.5	51.9														
Riffle Slope (ft/ft)	0.0109	0.0449														
Pool Length (ft)	9.1	35.5														
Pool Max Depth (ft)	1.4	3.1														
Pool Spacing (ft)	45	82														
Pool Volume (ft ³)																
Pattern																
Channel Beltwidth (ft)	35	55		[
Radius of Curvature (ft)	15	23														
Rc:Bankfull Width (ft/ft)	1.9	2.8														
Meander Wave Length (ft)	96	117														
Meander Width Ratio	4.3	6.8														
Additional Reach Parameters		•		•												
Rosgen Classification		C4														
Channel Thalweg Length (ft)	e	566														
Sinuosity (ft)		1.2														
Water Surface Slope (ft/ft)	٩	N/A														
Bankfull Slope (ft/ft)	0.0	0129														
Ri%/Ru%/P%/G%/S%																
SC%/Sa%/G%/C%/B%/Be%																
d16/d35/d50/d84/d95/d100	SC/SC/0.25/2	6.2/75.9/180.0	SC\4.00\23.4\	SC\4.00\23.4\77.8\119.3\180.0		93.2\143.4\256.0										
% of Reach with Eroding Banks	(0%		0%	(0%										

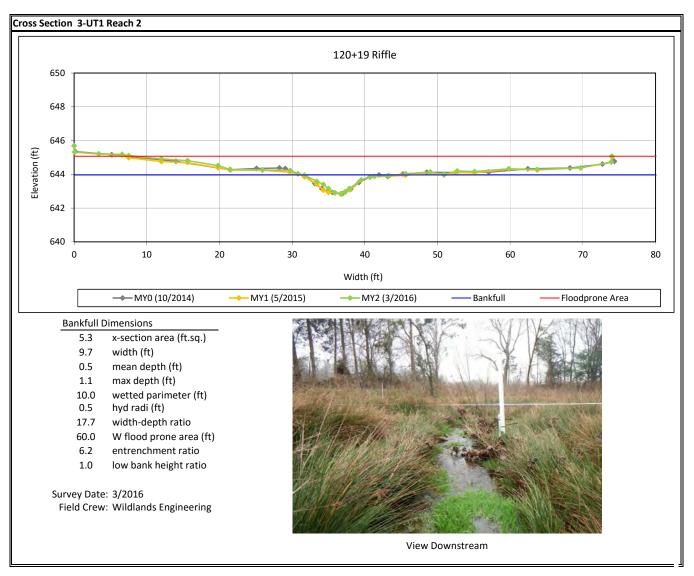
Table 12e. Monitoring Data - Stream Reach Data Summary Agony Acres Mitigation Site (DMS Project No. 95716) Monitoring Year 2 - 2016

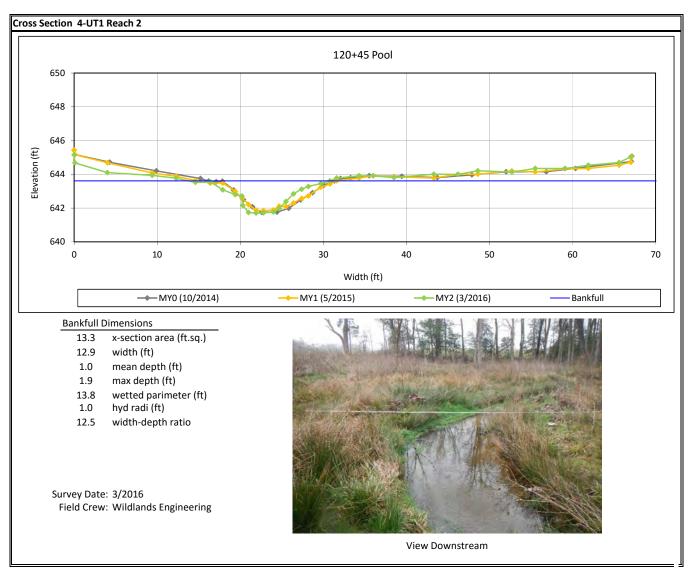
UT1B

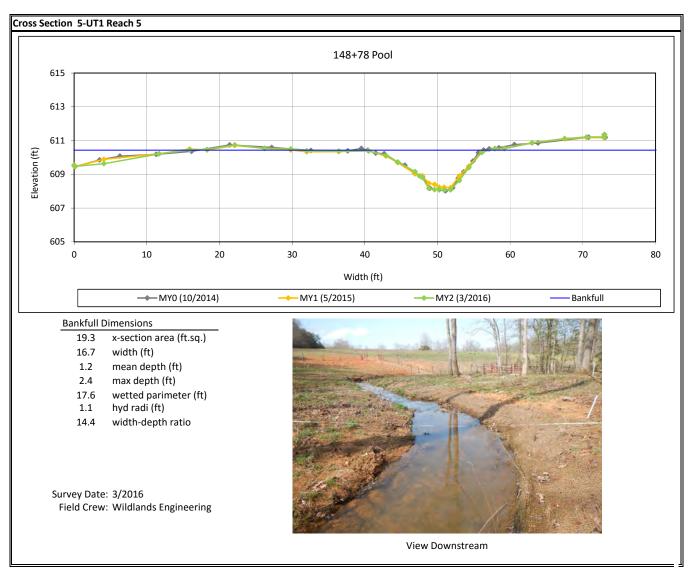
OTTB Parameter	As-Built/Baseline MY			MV1		MY2		MY3		MY4		MY5		MY6	MY7		
Falalletei	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	
Dimension and Substrate - Riffle	IVIIII	IVIAX	IVIIII	IVIDA	IVIIII	IVIDA	IVIIII	IVIDA	IVIIII	IVIDA	IVIIII	IVIDA	IVIIII	IVIDA	IVIIII	IVIDA	
Bankfull Width (ft)		7.7		7.8		7.7											
Floodprone Width (ft)		70		70		70											
Bankfull Mean Depth		0.5		0.5		0.4											
Bankfull Max Depth		0.7		0.9		0.8	├ ─────		łł								
Bankfull Cross Sectional Area (ft ²)		3.5		3.6		3.2			ł		-		+				
Width/Depth Ratio		17.0		16.9		18.3			-		-						
Entrenchment Ratio		9.1		9.0		9.1											
Bank Height Ratio		1.0		1.0		1.0											
D50 (mm)		1.3		43.9		26.9			t								
Profile																	
Riffle Length (ft)	12.1	24.4															
Riffle Slope (ft/ft)	0.0219	0.0425															
Pool Length (ft)	11.9	30.9															
Pool Max Depth (ft)	1.7	2.5															
Pool Spacing (ft)	30	45															
Pool Volume (ft ³)																	
Pattern		•		•				•		•							
Channel Beltwidth (ft)	25	40															
Radius of Curvature (ft)	14	20															
Rc:Bankfull Width (ft/ft)	1.8	2.6															
Meander Wave Length (ft)	60	72															
Meander Width Ratio	3.2	5.2															
Additional Reach Parameters																	
Rosgen Classification		C4															
Channel Thalweg Length (ft)		232															
Sinuosity (ft)		1.3															
Water Surface Slope (ft/ft)		0095															
Bankfull Slope (ft/ft)	0.0	0181															
Ri%/Ru%/P%/G%/S%																	
SC%/Sa%/G%/C%/B%/Be%																	
d16/d35/d50/d84/d95/d100	SC/SC/SC/19	· · ·	SC\0.71\5.6	64.0\107.3\180.0		SC\0.40\3.3\40.2\95.4\128.0											
% of Reach with Eroding Banks	(0%		0%		0%											

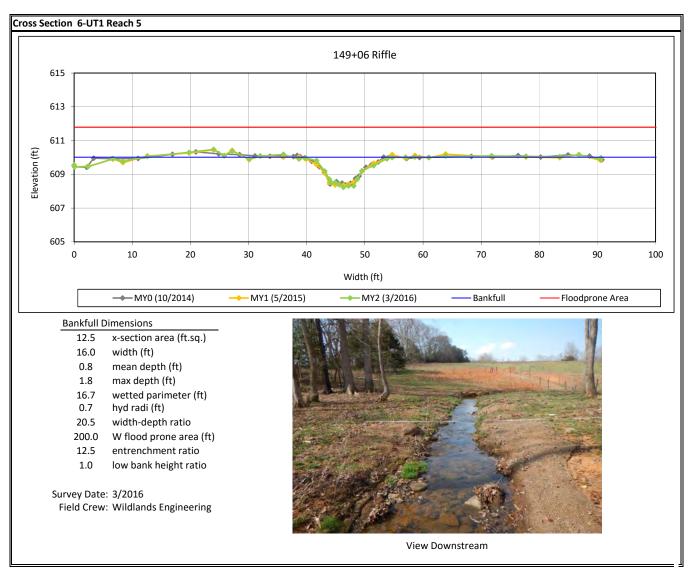

Table 12f. Monitoring Data - Stream Reach Data Summary Agony Acres Mitigation Site (DMS Project No. 95716) Monitoring Year 2 - 2016

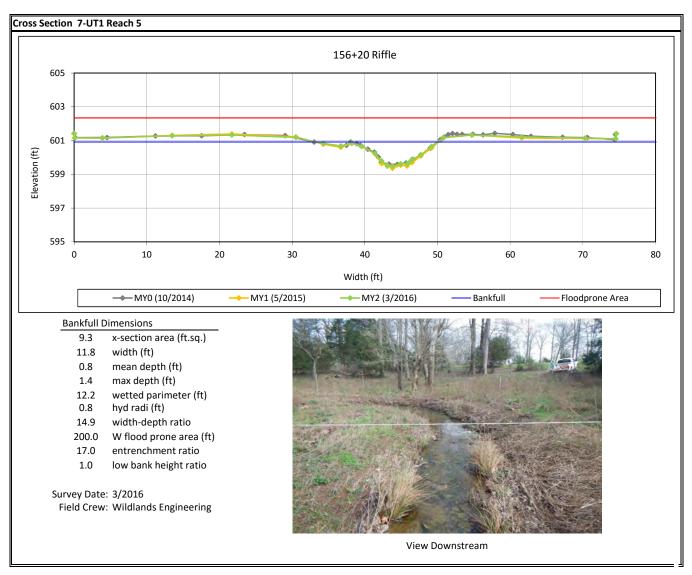

UT2

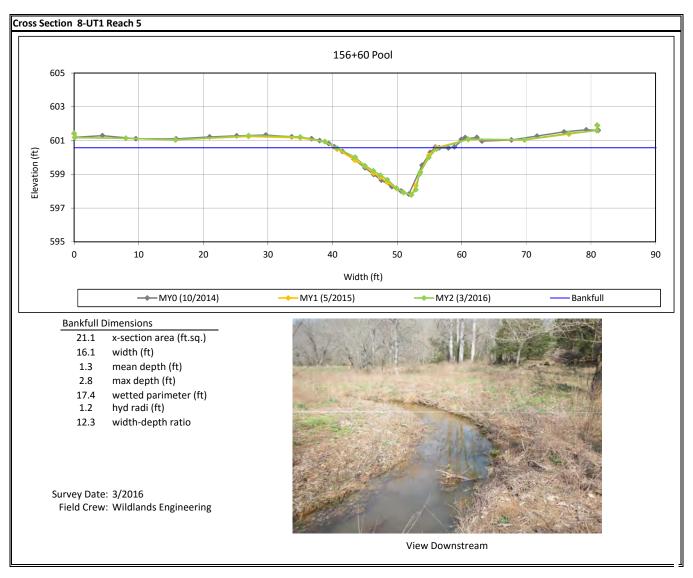

Parameter	As-Built/Baseline			MY1	N	MY2		MY3	MY4		MY5		MY6		MY7	
Falalletei	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max
Dimension and Substrate - Riffle	IVIIN	IVIAX	IVIIN	IVIAX	IVIIN	IVIAX	IVIIN	IVIAX	IVIIN	IVIAX	IVIIN	IVIAX	IVIIN	Iviax	IVIIN	IVIAX
Bankfull Width (ft)		7.1		7.0		6.8										
		50											-			
Floodprone Width (ft) Bankfull Mean Depth				50	50 0.5								-			
Bankfull Mean Depth Bankfull Max Depth).5).7		0.5).9							-			
													-			
Bankfull Cross Sectional Area (ft ²)		3.4		3.8		3.5									 	
Width/Depth Ratio		4.7		12.9		3.5										
Entrenchment Ratio		7.0		7.2		7.3										
Bank Height Ratio		1.0		1.0		1.0										
D50 (mm)	1	9.7		25.0	2	3.5										
Profile																
Riffle Length (ft)	13.9	51.7														
Riffle Slope (ft/ft)	0.0146	0.0525														
Pool Length (ft)	10.0	28.4														
Pool Max Depth (ft)	1.0	2.4														
Pool Spacing (ft)	25	66														
Pool Volume (ft ³)																
Pattern																
Channel Beltwidth (ft)	19	50														
Radius of Curvature (ft)	12	20														
Rc:Bankfull Width (ft/ft)	1.8	3.0														
Meander Wave Length (ft)	58	98														
Meander Width Ratio	2.8	7.5														
Additional Reach Parameters																•
Rosgen Classification		C4														
Channel Thalweg Length (ft)	1,	032														
Sinuosity (ft)		L.2							1							
Water Surface Slope (ft/ft)		0207							1							
Bankfull Slope (ft/ft)		0195				1								1		
Ri%/Ru%/P%/G%/S%														1	1	
SC%/Sa%/G%/C%/B%/Be%			1			1			1	1				1	1	
d16/d35/d50/d84/d95/d100	SC/SC/SC/30	2/64.0/128.0	SC\2.80\10.7	\35.9\75.9\180.0	SC\3.23\12.9\	43.6\80.3\180.0										
% of Reach with Eroding Banks				0%											1	
70 OF NEACH WITH LIDUING DATIKS	0%		1	070	L L	0%			1		1		1		1	

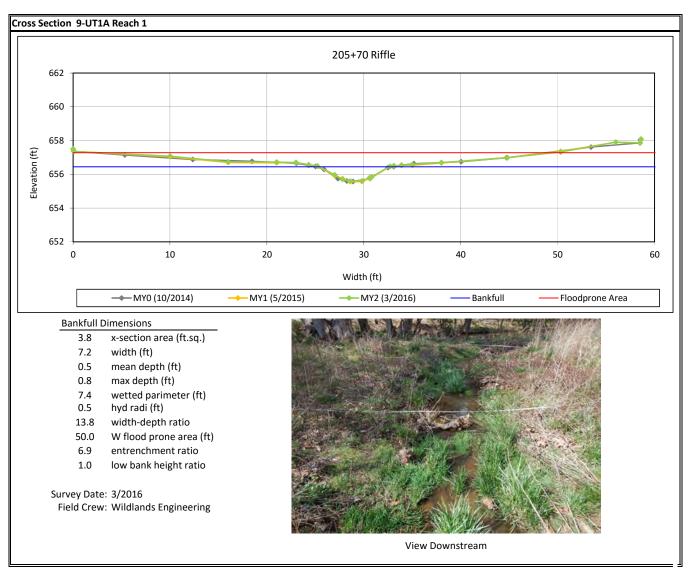

Cross Section Plots

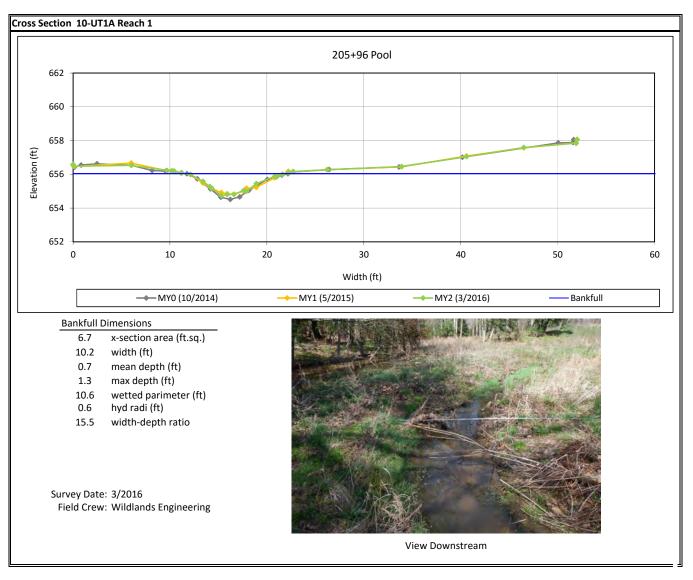

Agony Acres Mitigtion Site (DMS Project No. 95716) Monitoring Year 2 - 2016

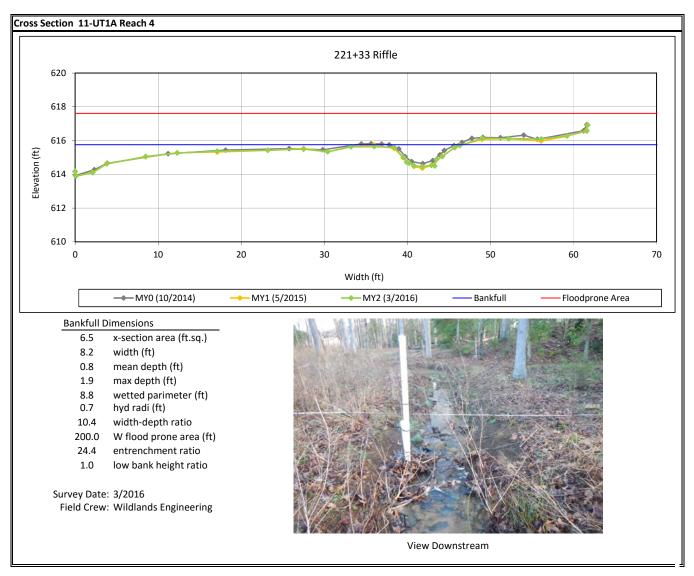


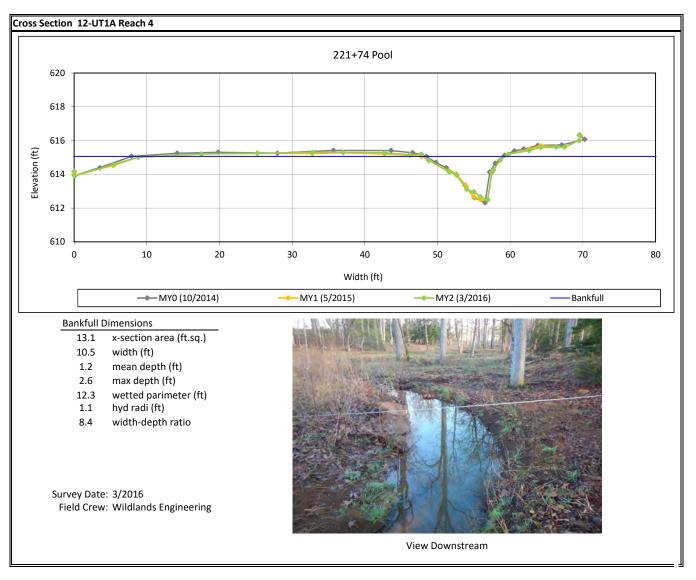


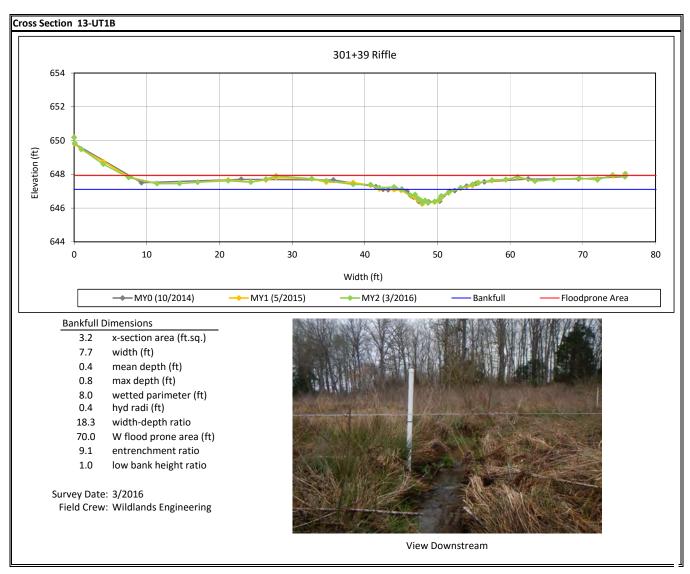


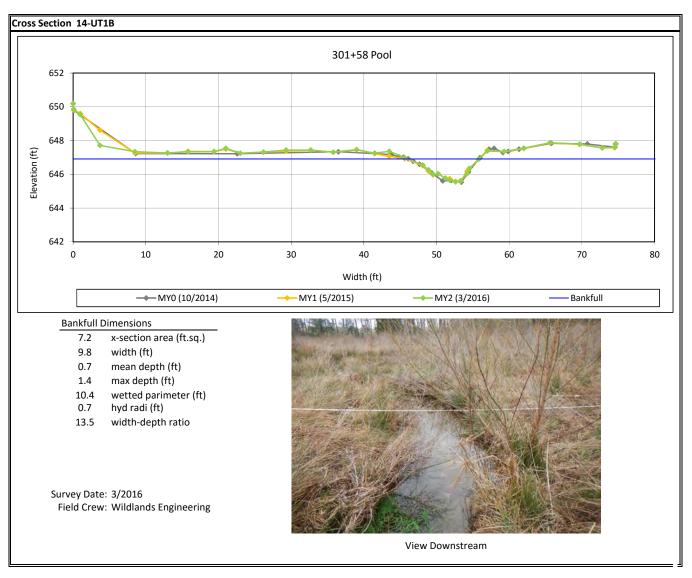


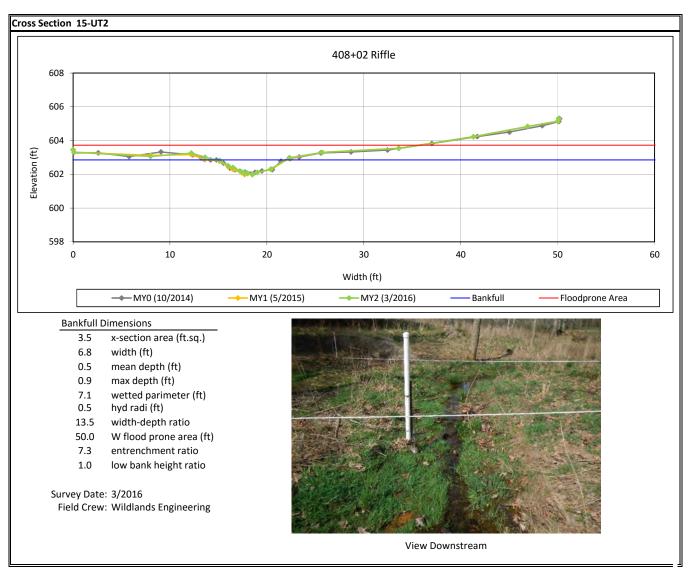


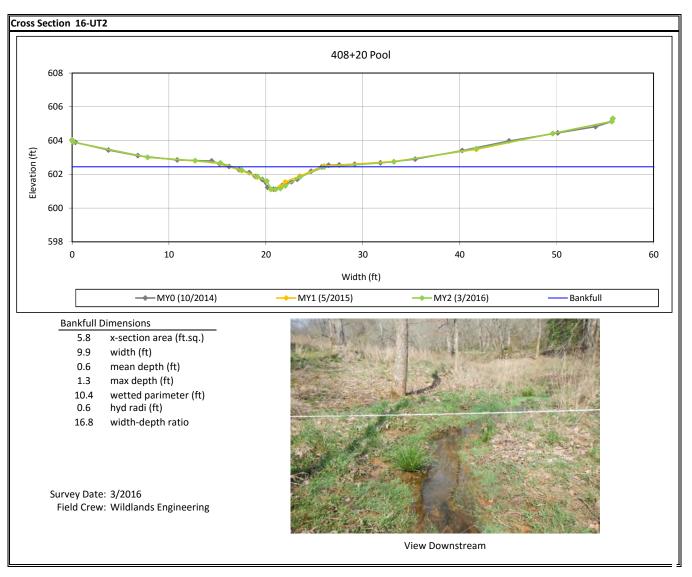


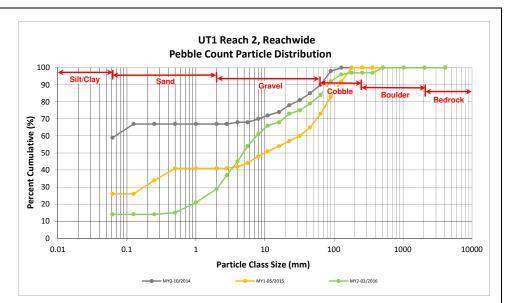


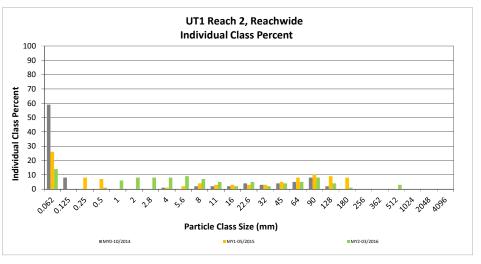








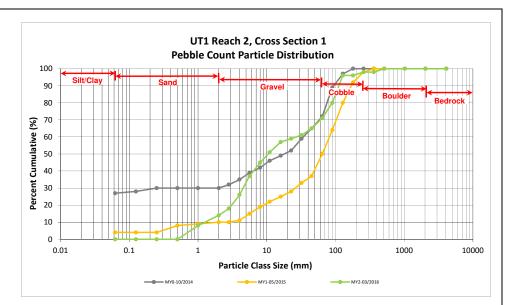


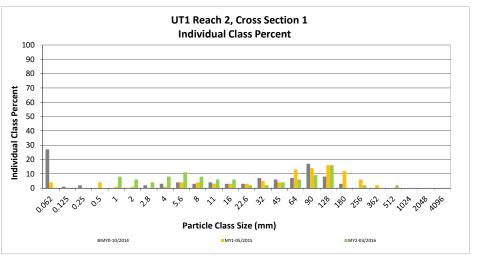


Agony Acres Mitigation Site (DMS Project No. 95716) Monitoring Year 2 - 2016 UT1 Reach 2, Reachwide

			ter (mm)	Pa	rticle Co	unt		Reach Summary	
Par	Particle Class						Class	Percent	
		min	max	Riffle	Pool	Total	Percentage	Cumulative	
SILT/CLAY	Silt/Clay	0.000	0.062	6	8	14	14	14	
	Very fine	0.062	0.125					14	
	Fine	0.125	0.250					14	
SAND	Medium	0.25	0.50		1	1	1	15	
יל	Coarse	0.5	1.0	3	3	6	6	21	
	Very Coarse	1.0	2.0	4	4	8	8	29	
	Very Fine	2.0	2.8	3	5	8	8	37	
	Very Fine	2.8	4.0	4	4	8	8	45	
	Fine	4.0	5.6	3	6	9	9	54	
	Fine	5.6	8.0	3	4	7	7	61	
JE -	Medium	8.0	11.0	2	3	5	5	66	
GRAVEL	Medium	11.0	16.0	1	1	2	2	68	
-	Coarse	16.0	22.6	4	1	5	5	73	
	Coarse	22.6	32	2		2	2	75	
	Very Coarse	32	45	4		4	4	79	
	Very Coarse	45	64	5		5	5	84	
	Small	64	90	8		8	8	92	
COBBLE	Small	90	128	4		4	4	96	
080	Large	128	180	1		1	1	97	
-	Large	180	256					97	
	Small	256	362					97	
EON DE	Small	362	512	3		3	3	100	
	Medium	512	1024					100	
v	Large/Very Large	1024	2048					100	
BEDROCK	Bedrock	2048	>2048					100	
			Total	60	40	100	100	100	

Reachwide					
Chann	Channel materials (mm)				
D ₁₆ =	0.56				
D ₃₅ =	2.57				
D ₅₀ =	4.8				
D ₈₄ =	64.0				
D ₉₅ =	117.2				
D ₁₀₀ =	512.0				

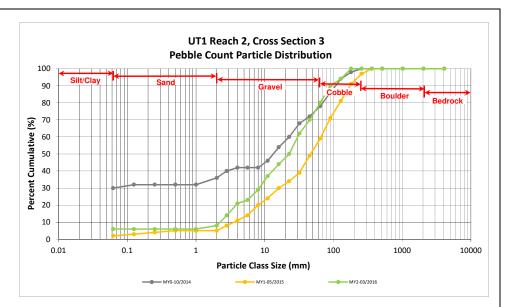


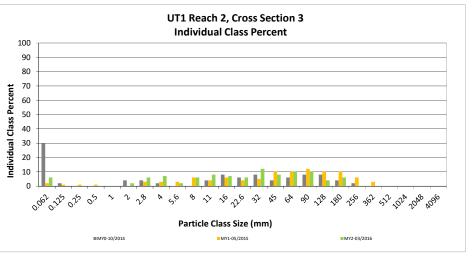


Agony Acres Mitigation Site (DMS Project No. 95716) Monitoring Year 2 - 2016 UT1 Reach 2, Cross Section 1

		Diame	ter (mm)	Riffle 100-	Summary		
Particle Class				Count	Class	Percent	
		min	max	count	Percentage	Cumulative	
SILT/CLAY	Silt/Clay	0.000	0.062			0	
	Very fine	0.062	0.125			0	
	Fine	0.125	0.250			0	
SAND	Medium	0.25	0.50			0	
יכ.	Coarse	0.5	1.0	8	8	8	
	Very Coarse	1.0	2.0	6	6	14	
	Very Fine	2.0	2.8	4	4	18	
	Very Fine	2.8	4.0	8	8	26	
	Fine	4.0	5.6	11	11	37	
	Fine	5.6	8.0	8	8	45	
JEL	Medium	8.0	11.0	6	6	51	
GRAVEL	Medium	11.0	16.0	6	6	57	
	Coarse	16.0	22.6	2	2	59	
	Coarse	22.6	32	2	2	61	
	Very Coarse	32	45	4	4	65	
	Very Coarse	45	64	6	6	71	
	Small	64	90	9	9	80	
alt	Small	90	128	16	16	96	
COBBLE	Large	128	180			96	
	Large	180	256	2	2	98	
	Small	256	362			98	
ROUPER	Small	362	512	2	2	100	
SON.	Medium	512	1024			100	
.	Large/Very Large	1024	2048			100	
BEDROCK	Bedrock	2048	>2048			100	
			Total	100	100	100	

	Cross Section 1			
Channel materials (mm)				
D ₁₆ =	2.37			
D ₃₅ =	5.27			
D ₅₀ =	10.4			
D ₈₄ =	98.3			
D ₉₅ =	125.2			
D ₁₀₀ =	512.0			

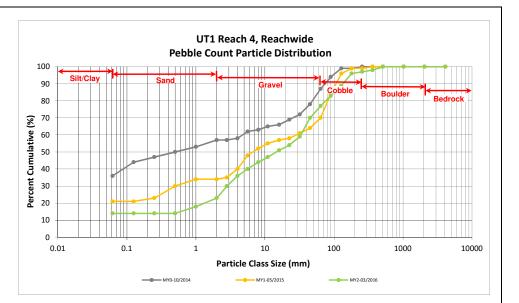


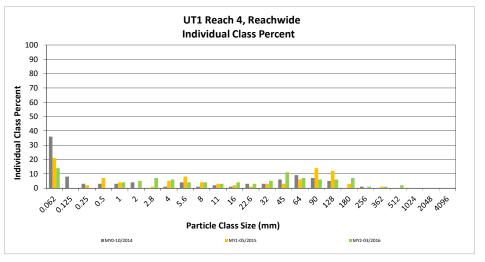


Agony Acres Mitigation Site (DMS Project No. 95716) Monitoring Year 2 - 2016 UT1 Reach 2, Cross Section 3

			ter (mm)	Riffle 100-	Summary		
Particle Class				Count	Class	Percent	
		min	max	count	Percentage	Cumulative	
SILT/CLAY	Silt/Clay	0.000	0.062	6	6	6	
	Very fine	0.062	0.125			6	
_	Fine	0.125	0.250			6	
SAND	Medium	0.25	0.50			6	
יכ.	Coarse	0.5	1.0			6	
	Very Coarse	1.0	2.0	2	2	8	
	Very Fine	2.0	2.8	6	6	14	
	Very Fine	2.8	4.0	7	7	21	
	Fine	4.0	5.6	2	2	23	
	Fine	5.6	8.0	6	6	29	
NEL	Medium	8.0	11.0	8	8	37	
GRAVEL	Medium	11.0	16.0	7	7	44	
	Coarse	16.0	22.6	6	6	50	
	Coarse	22.6	32	12	12	62	
	Very Coarse	32	45	8	8	70	
	Very Coarse	45	64	10	10	80	
	Small	64	90	10	10	90	
alt	Small	90	128	4	4	94	
COBBLE	Large	128	180	6	6	100	
	Large	180	256			100	
	Small	256	362			100	
ROUTOFF	Small	362	512			100	
Ň	Medium	512	1024			100	
~	Large/Very Large	1024	2048			100	
BEDROCK	Bedrock	2048	>2048			100	
			Total	100	100	100	

	Cross Section 3			
Channel materials (mm)				
D ₁₆ =	3.10			
D ₃₅ =	10.16			
D ₅₀ =	22.6			
D ₈₄ =	73.4			
D ₉₅ =	135.5			
D ₁₀₀ =	180.0			

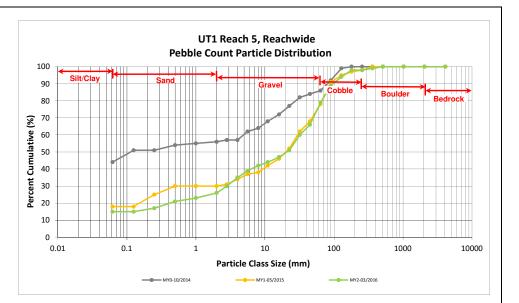


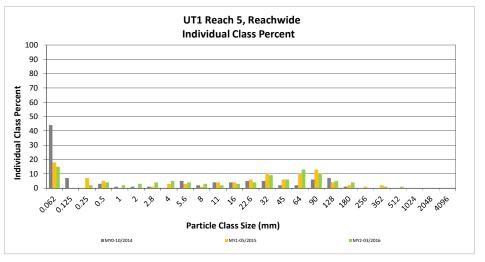


Agony Acres Mitigation Site (DMS Project No. 95716) Monitoring Year 2 - 2016 UT1 Reach 4, Reachwide

			ter (mm)	Particle Count			Reach Summary	
Par	Particle Class						Class	Percent
		min	max	Riffle	Pool	Total	Percentage	Cumulative
SILT/CLAY	Silt/Clay	0.000	0.062	4	10	14	14	14
	Very fine	0.062	0.125					14
	Fine	0.125	0.250					14
SAND	Medium	0.25	0.50					14
יכ	Coarse	0.5	1.0		4	4	4	18
	Very Coarse	1.0	2.0	1	4	5	5	23
	Very Fine	2.0	2.8	1	6	7	7	30
	Very Fine	2.8	4.0	1	5	6	6	36
	Fine	4.0	5.6		4	4	4	40
	Fine	5.6	8.0	1	3	4	4	44
.161	Medium	8.0	11.0	2	1	3	3	47
GRAVEL	Medium	11.0	16.0	4		4	4	51
-	Coarse	16.0	22.6	3		3	3	54
	Coarse	22.6	32	5		5	5	59
	Very Coarse	32	45	10	1	11	11	70
	Very Coarse	45	64	7		7	7	77
	Small	64	90	5	1	6	6	83
COBBIE	Small	90	128	5	1	6	6	89
COBD	Large	128	180	7		7	7	96
-	Large	180	256	1		1	1	97
	Small	256	362	1		1	1	98
ROMAN ROMAN	Small	362	512	2		2	2	100
್ಷೆ	Medium	512	1024					100
×	Large/Very Large	1024	2048					100
BEDROCK	Bedrock	2048	>2048					100
			Total	60	40	100	100	100

Reachwide					
Chann	Channel materials (mm)				
D ₁₆ =	0.71				
D ₃₅ =	3.77				
D ₅₀ =	14.6				
D ₈₄ =	95.4				
D ₉₅ =	171.4				
D ₁₀₀ =	512.0				

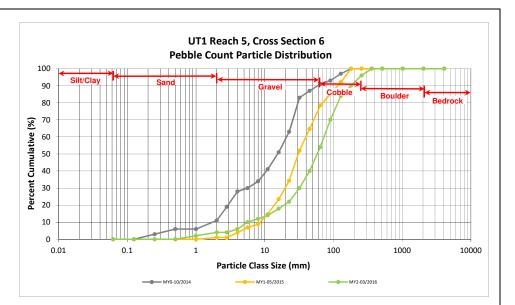


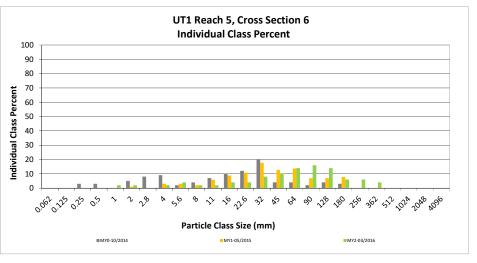


Agony Acres Mitigation Site (DMS Project No. 95716) Monitoring Year 2 - 2016 UT1 Reach 5, Reachwide

		Diame	ter (mm)	Ра	rticle Co	unt	Reach Summary	
Par	Particle Class						Class	Percent
		min	max	Riffle	Pool	Total	Percentage	Cumulative
SILT/CLAY	Silt/Clay	0.000	0.062	1	14	15	15	15
	Very fine	0.062	0.125					15
	Fine	0.125	0.250		2	2	2	17
SAND	Medium	0.25	0.50	1	3	4	4	21
יכ	Coarse	0.5	1.0		2	2	2	23
	Very Coarse	1.0	2.0		3	3	3	26
	Very Fine	2.0	2.8	1	3	4	4	30
	Very Fine	2.8	4.0	2	3	5	5	35
	Fine	4.0	5.6	2	2	4	4	39
	Fine	5.6	8.0	1	2	3	3	42
JEL	Medium	8.0	11.0		2	2	2	44
GRAVEL	Medium	11.0	16.0	2	1	3	3	47
-	Coarse	16.0	22.6	4		4	4	51
	Coarse	22.6	32	7	2	9	9	60
	Very Coarse	32	45	5	1	6	6	66
	Very Coarse	45	64	13		13	13	79
	Small	64	90	10		10	10	89
COBBLE	Small	90	128	5		5	5	94
COBE	Large	128	180	4		4	4	98
-	Large	180	256					98
	Small	256	362	1		1	1	99
ROUTER	Small	362	512	1		1	1	100
్రహ	Medium	512	1024					100
~	Large/Very Large	1024	2048					100
BEDROCK	Bedrock	2048	>2048					100
			Total	60	40	100	100	100

	Reachwide				
Chann	Channel materials (mm)				
D ₁₆ =	0.18				
D ₃₅ =	4.00				
D ₅₀ =	20.7				
D ₈₄ =	75.9				
D ₉₅ =	139.4				
D ₁₀₀ =	512.0				

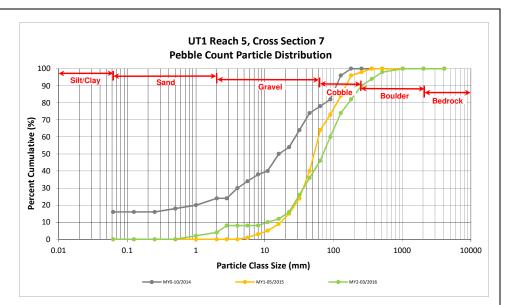


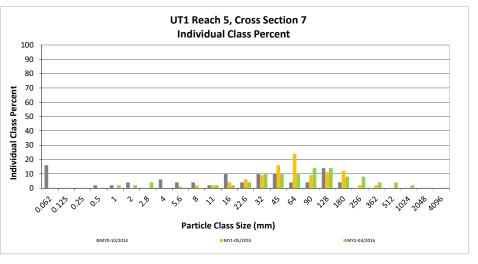


Agony Acres Mitigation Site (DMS Project No. 95716) Monitoring Year 2 - 2016 UT1 Reach 5, Cross Section 6

		Diame	ter (mm)	Riffle 100-	Summary		
Par	ticle Class			Count	Class	Percent	
SILT/CLAY Silt/Clay		min	max	count	Percentage	Cumulative	
SILT/CLAY	Silt/Clay	0.000	0.062			0	
	Very fine	0.062	0.125			0	
_	Fine	0.125	0.250			0	
SAND	Medium	0.25	0.50			0	
יכ.	Coarse	0.5	1.0	2	2	2	
	Very Coarse	1.0	2.0	2	2	4	
	Very Fine	2.0	2.8			4	
	Very Fine	2.8	4.0	2	2	6	
	Fine	4.0	5.6	4	4	10	
	Fine	5.6	8.0	2	2	12	
NEL	Medium	8.0	11.0	2	2	14	
GRAVEL	Medium	11.0	16.0	4	4	18	
	Coarse	16.0	22.6	4	4	22	
	Coarse	22.6	32	8	8	30	
	Very Coarse	32	45	10	10	40	
	Very Coarse	45	64	14	14	54	
	Small	64	90	16	16	70	
alt	Small	90	128	14	14	84	
COBBLE	Large	128	180	6	6	90	
-	Large	180	256	6	6	96	
	Small	256	362	4	4	100	
BOULDER	Small	362	512			100	
and the second s	Medium	512	1024			100	
v	Large/Very Large	1024	2048			100	
BEDROCK	Bedrock	2048	>2048			100	
			Total	100	100	100	

	Cross Section 6			
Channel materials (mm)				
D ₁₆ =	13.27			
D ₃₅ =	37.95			
D ₅₀ =	57.9			
D ₈₄ =	128.0			
D ₉₅ =	241.4			
D ₁₀₀ =	362.0			

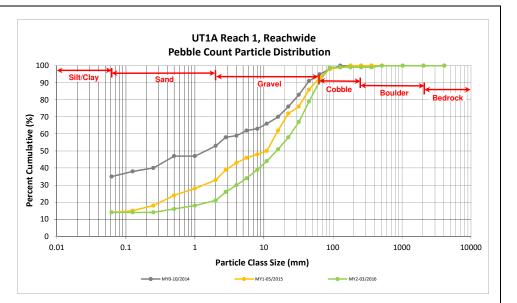


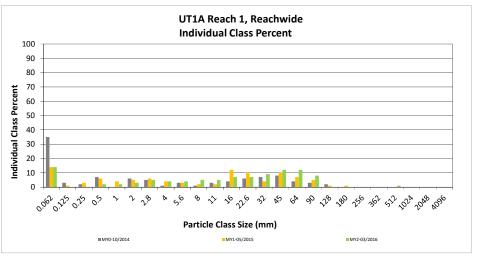


Agony Acres Mitigation Site (DMS Project No. 95716) Monitoring Year 2 - 2016 UT1 Reach 5, Cross Section 7

		Diame	ter (mm)	Riffle 100-	Summary		
Par	ticle Class			Count	Class	Percent	
<i>SILT/CLAY</i> Silt/Clav		min	max	count	Percentage	Cumulative	
SILT/CLAY	Silt/Clay	0.000	0.062			0	
	Very fine	0.062	0.125			0	
_	Fine	0.125	0.250			0	
SAND	Medium	0.25	0.50			0	
יכ.	Coarse	0.5	1.0	2	2	2	
	Very Coarse	1.0	2.0	2	2	4	
	Very Fine	2.0	2.8	4	4	8	
	Very Fine	2.8	4.0			8	
	Fine	4.0	5.6			8	
	Fine	5.6	8.0			8	
NEL	Medium	8.0	11.0	2	2	10	
GRAVEL	Medium	11.0	16.0	2	2	12	
	Coarse	16.0	22.6	4	4	16	
	Coarse	22.6	32	10	10	26	
	Very Coarse	32	45	10	10	36	
	Very Coarse	45	64	10	10	46	
	Small	64	90	14	14	60	
alt	Small	90	128	14	14	74	
COBBLE	Large	128	180	8	8	82	
	Large	180	256	8	8	90	
	Small	256	362	4	4	94	
ROHOES	Small	362	512	4	4	98	
	Medium	512	1024	2	2	100	
	Large/Very Large	1024	2048			100	
BEDROCK	Bedrock	2048	>2048			100	
			Total	100	100	100	

	Cross Section 7					
Channel materials (mm)						
D ₁₆ =	D ₁₆ = 22.60					
D ₃₅ =	43.49					
D ₅₀ =	70.5					
D ₈₄ =	196.6					
D ₉₅ =	394.8					
D ₁₀₀ =	1024.0					

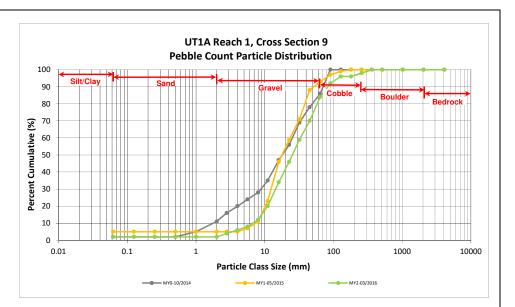


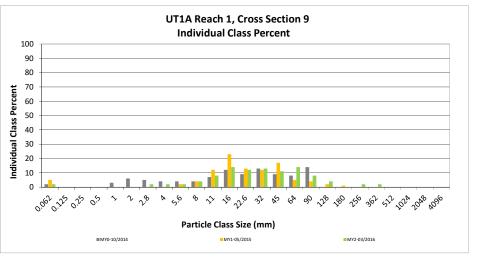


Agony Acres Mitigation Site (DMS Project No. 95716) Monitoring Year 2 - 2016 UT1A Reach 1, Reachwide

		Diame	ter (mm)	Pa	rticle Co	unt	Reach Summary	
Par	Particle Class						Class	Percent
		min	max	Riffle	Pool	Total	Percentage	Cumulative
SILT/CLAY	Silt/Clay	0.000	0.062	2	12	14	14	14
	Very fine	0.062	0.125					14
	Fine	0.125	0.250					14
SAND	Medium	0.25	0.50		2	2	2	16
יכ	Coarse	0.5	1.0		2	2	2	18
	Very Coarse	1.0	2.0		3	3	3	21
	Very Fine	2.0	2.8	1	4	5	5	26
	Very Fine	2.8	4.0	1	3	4	4	30
	Fine	4.0	5.6	1	3	4	4	34
	Fine	5.6	8.0	1	4	5	5	39
JEL	Medium	8.0	11.0	3	2	5	5	44
GRAVEL	Medium	11.0	16.0	5	2	7	7	51
-	Coarse	16.0	22.6	5	2	7	7	58
	Coarse	22.6	32	9		9	9	67
	Very Coarse	32	45	12		12	12	79
	Very Coarse	45	64	11	1	12	12	91
	Small	64	90	8		8	8	99
COBBLE	Small	90	128					99
COBD	Large	128	180					99
•	Large	180	256					99
RONDE	Small	256	362					99
	Small	362	512	1		1	1	100
	Medium	512	1024					100
	Large/Very Large	1024	2048					100
BEDROCK	Bedrock	2048	>2048					100
			Total	60	40	100	100	100

Reachwide					
Channel materials (mm)					
D ₁₆ =	0.50				
D ₃₅ =	6.01				
D ₅₀ =	15.2				
D ₈₄ =	52.1				
D ₉₅ =	75.9				
D ₁₀₀ =	512.0				

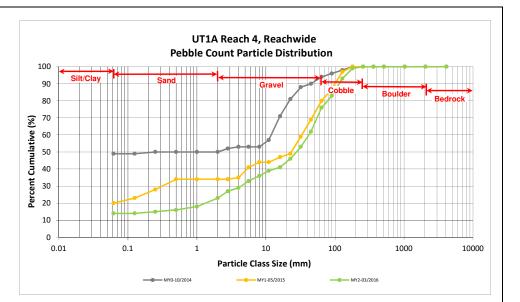


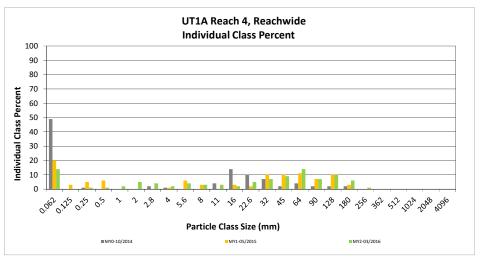


Agony Acres Mitigation Site (DMS Project No. 95716) Monitoring Year 2 - 2016 UT1A Reach 1, Cross Section 9

		Diame	ter (mm)	Riffle 100-	Summary		
Particle Class				Count	Class	Percent	
		min	max		Percentage	Cumulative	
SILT/CLAY	Silt/Clay	0.000	0.062	2	2	2	
	Very fine	0.062	0.125			2	
-	Fine	0.125	0.250			2	
SAND	Medium	0.25	0.50			2	
יכ.	Coarse	0.5	1.0			2	
	Very Coarse	1.0	2.0			2	
	Very Fine	2.0	2.8	2	2	4	
	Very Fine	2.8	4.0	2	2	6	
	Fine	4.0	5.6	2	2	8	
	Fine	5.6	8.0	4	4	12	
JE	Medium	8.0	11.0	8	8	20	
GRAVEL	Medium	11.0	16.0	14	14	34	
	Coarse	16.0	22.6	12	12	46	
	Coarse	22.6	32	13	13	59	
	Very Coarse	32	45	11	11	70	
	Very Coarse	45	64	14	14	84	
	Small	64	90	8	8	92	
alt	Small	90	128	4	4	96	
COBBLE	Large	128	180			96	
	Large	180	256	2	2	98	
	Small	256	362	2	2	100	
, S	Small	362	512			100	
ROUTOFF	Medium	512	1024			100	
	Large/Very Large	1024	2048			100	
BEDROCK	Bedrock	2048	>2048			100	
			Total	100	100	100	

	Cross Section 9					
Channel materials (mm)						
D ₁₆ = 9.38						
D ₃₅ =	16.47					
D ₅₀ =	25.2					
D ₈₄ =	64.0					
D ₉₅ =	117.2					
D ₁₀₀ =	362.0					

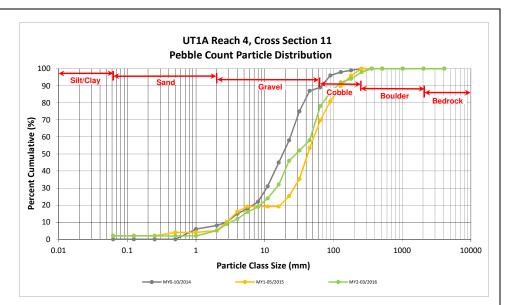


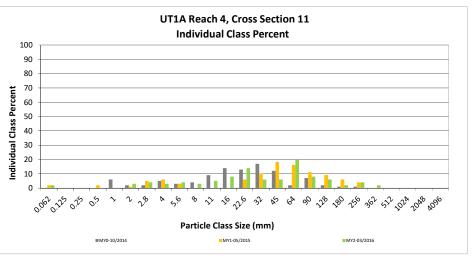


Agony Acres Mitigation Site (DMS Project No. 95716) Monitoring Year 2 - 2016 UT1A Reach 4, Reachwide

		Diame	ter (mm)	Pa	rticle Co	unt	Reach Summary	
Particle Class							Class	Percent
		min	max	Riffle	Pool	Total	Percentage	Cumulative
SILT/CLAY	Silt/Clay	0.000	0.062		14	14	14	14
	Very fine	0.062	0.125					14
	Fine	0.125	0.250		1	1	1	15
SAND	Medium	0.25	0.50		1	1	1	16
יר	Coarse	0.5	1.0		2	2	2	18
	Very Coarse	1.0	2.0	1	4	5	5	23
	Very Fine	2.0	2.8	1	3	4	4	27
	Very Fine	2.8	4.0		2	2	2	29
	Fine	4.0	5.6		4	4	4	33
	Fine	5.6	8.0		3	3	3	36
JAL	Medium	8.0	11.0	1	2	3	3	39
GRAVEL	Medium	11.0	16.0	2		2	2	41
-	Coarse	16.0	22.6	4	1	5	5	46
	Coarse	22.6	32	7		7	7	53
	Very Coarse	32	45	8	1	9	9	62
	Very Coarse	45	64	13	1	14	14	76
	Small	64	90	7		7	7	83
COBBLE	Small	90	128	9	1	10	10	93
C080	Large	128	180	6		6	6	99
	Large	180	256	1		1	1	100
RONDER	Small	256	362					100
	Small	362	512					100
	Medium	512	1024					100
×	Large/Very Large	1024	2048					100
BEDROCK	Bedrock	2048	>2048					100
			Total	60	40	100	100	100

Reachwide					
Channel materials (mm)					
D ₁₆ =	0.50				
D ₃₅ =	7.10				
D ₅₀ =	27.57				
D ₈₄ =	93.2				
D ₉₅ =	143.4				
D ₁₀₀ =	256.0				

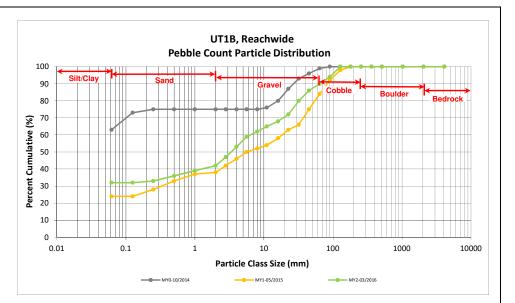


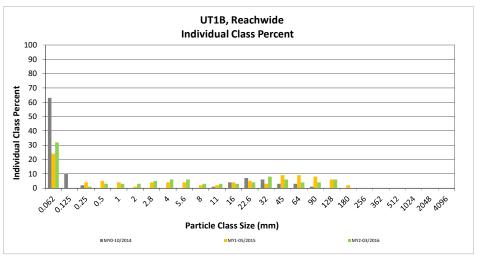


Agony Acres Mitigation Site (DMS Project No. 95716) Monitoring Year 2 - 2016 UT1A Reach 4, Cross Section 11

		Diame	ter (mm)	Riffle 100-	Sum	Summary		
Particle Class SILT/CLAY Silt/Clay				Count	Class	Percent		
		min	max	count	Percentage	Cumulative		
SILT/CLAY	Silt/Clay	0.000	0.062	2	2	2		
	Very fine	0.062	0.125			2		
	Fine	0.125	0.250			2		
SAND	Medium	0.25	0.50			2		
יל	Coarse	0.5	1.0			2		
	Very Coarse	1.0	2.0	3	3	5		
	Very Fine	2.0	2.8	4	4	9		
	Very Fine	2.8	4.0	3	3	12		
	Fine	4.0	5.6	4	4	16		
	Fine	5.6	8.0	3	3	19		
JEL	Medium	8.0	11.0	5	5	24		
GRAVEL	Medium	11.0	16.0	8	8	32		
	Coarse	16.0	22.6	14	14	46		
	Coarse	22.6	32	6	6	52		
	Very Coarse	32	45	6	6	58		
	Very Coarse	45	64	20	20	78		
	Small	64	90	8	8	86		
alt	Small	90	128	6	6	92		
COBBLE	Large	128	180	2	2	94		
	Large	180	256	4	4	98		
	Small	256	362	2	2	100		
ROMAN	Small	362	512			100		
	Medium	512	1024			100		
.	Large/Very Large	1024	2048			100		
BEDROCK	Bedrock	2048	>2048			100		
			Total	100	100	100		

	Cross Section 11					
Channel materials (mm)						
D ₁₆ = 5.60						
D ₃₅ =	17.23					
D ₅₀ =	28.5					
D ₈₄ =	82.6					
D ₉₅ =	196.6					
D ₁₀₀ =	362.0					

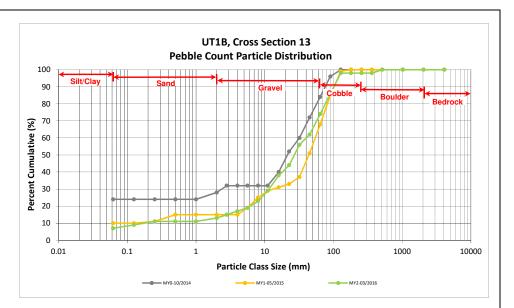


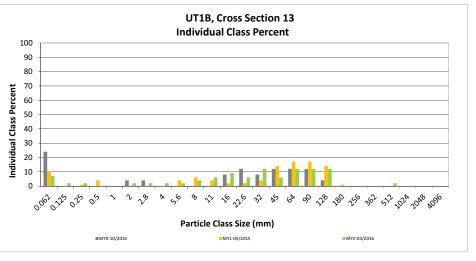


Agony Acres Mitigation Site (DMS Project No. 95716) Monitoring Year 2 - 2016 UT1B, Reachwide

		Diame	ter (mm)	Pa	rticle Co	unt		Reach Summary	
Par	Particle Class						Class	Percent	
		min	max	Riffle	Pool	Total	Percentage	Cumulative	
SILT/CLAY	Silt/Clay	0.000	0.062	10	22	32	32	32	
	Very fine	0.062	0.125					32	
	Fine	0.125	0.250		1	1	1	33	
SAND	Medium	0.25	0.50	2	1	3	3	36	
יר	Coarse	0.5	1.0	1	2	3	3	39	
	Very Coarse	1.0	2.0		3	3	3	42	
	Very Fine	2.0	2.8	1	4	5	5	47	
	Very Fine	2.8	4.0	3	3	6	6	53	
	Fine	4.0	5.6	3	3	6	6	59	
	Fine	5.6	8.0	2	1	3	3	62	
JAL	Medium	8.0	11.0	3		3	3	65	
GRAVEL	Medium	11.0	16.0	3		3	3	68	
-	Coarse	16.0	22.6	4		4	4	72	
	Coarse	22.6	32	8		8	8	80	
	Very Coarse	32	45	6		6	6	86	
	Very Coarse	45	64	4		4	4	90	
	Small	64	90	4		4	4	94	
COBBLE	Small	90	128	6		6	6	100	
COBU	Large	128	180					100	
	Large	180	256					100	
_	Small	256	362					100	
ROHAE	Small	362	512					100	
	Medium	512	1024					100	
•	Large/Very Large	1024	2048					100	
BEDROCK	Bedrock	2048	>2048					100	
			Total	60	40	100	100	100	

	Reachwide					
Channel materials (mm)						
D ₁₆ =	Silt/Clay					
D ₃₅ =	0.40					
D ₅₀ =	3.3					
D ₈₄ =	40.2					
D ₉₅ =	95.4					
D ₁₀₀ =	128.0					

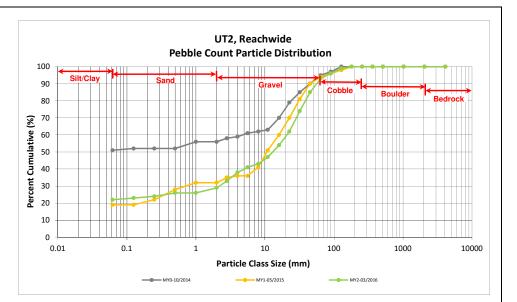


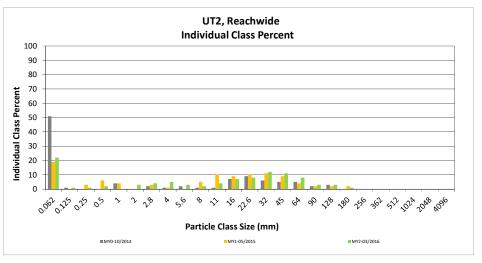


Agony Acres Mitigation Site (DMS Project No. 95716) Monitoring Year 2 - 2016 UT1B, Cross Section 13

Particle Class		Diameter (mm)		Riffle 100-	Summary	
				Count	Class	Percent
		min	max	count	Percentage	Cumulative
SILT/CLAY	Silt/Clay	0.000	0.062	7	7	7
	Very fine	0.062	0.125	2	2	9
-	Fine	0.125	0.250	2	2	11
SAND	Medium	0.25	0.50			11
ד'	Coarse	0.5	1.0			11
	Very Coarse	1.0	2.0	2	2	13
	Very Fine	2.0	2.8	2	2	15
	Very Fine	2.8	4.0	2	2	17
	Fine	4.0	5.6	2	2	19
	Fine	5.6	8.0	4	4	23
JEL	Medium	8.0	11.0	6	6	29
GRAVEL	Medium	11.0	16.0	9	9	38
	Coarse	16.0	22.6	6	6	44
	Coarse	22.6	32	12	12	56
	Very Coarse	32	45	6	6	62
	Very Coarse	45	64	12	12	74
	Small	64	90	12	12	86
alt	Small	90	128	12	12	98
COBBLE	Large	128	180			98
ļ	Large	180	256			98
BUILDER	Small	256	362			98
	Small	362	512	2	2	100
	Medium	512	1024			100
	Large/Very Large	1024	2048			100
BEDROCK	Bedrock	2048	>2048			100
	Total			100	100	100

Cross Section 13						
Channel materials (mm)						
D ₁₆ =	3.35					
D ₃₅ =	14.12					
D ₅₀ =	26.9					
D ₈₄ =	85.0					
D ₉₅ =	117.2					
D ₁₀₀ =	512.0					

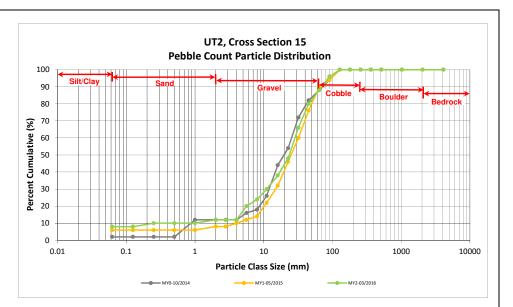


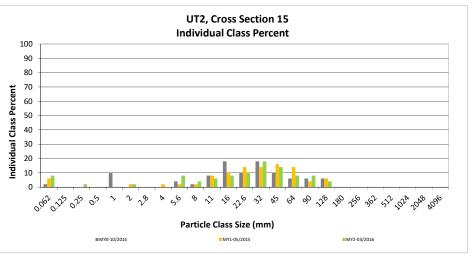


Agony Acres Mitigation Site (DMS Project No. 95716) Monitoring Year 2 - 2016 UT2, Reachwide

Particle Class		Diameter (mm)		Particle Count			Reach Summary	
							Class	Percent
		min	max	Riffle	Pool	Total	Percentage	Cumulative
SILT/CLAY	Silt/Clay	0.000	0.062	4	18	22	22	22
SAND	Very fine	0.062	0.125		1	1	1	23
	Fine	0.125	0.250		1	1	1	24
	Medium	0.25	0.50		2	2	2	26
יל	Coarse	0.5	1.0					26
	Very Coarse	1.0	2.0	2	1	3	3	29
	Very Fine	2.0	2.8	2	2	4	4	33
	Very Fine	2.8	4.0	1	4	5	5	38
	Fine	4.0	5.6	1	2	3	3	41
	Fine	5.6	8.0	1	1	2	2	43
JAL	Medium	8.0	11.0	3	1	4	4	47
GRAVEL	Medium	11.0	16.0	5	2	7	7	54
-	Coarse	16.0	22.6	7	1	8	8	62
	Coarse	22.6	32	10	2	12	12	74
	Very Coarse	32	45	10	1	11	11	85
	Very Coarse	45	64	8		8	8	93
	Small	64	90	3		3	3	96
alt	Small	90	128	2	1	3	3	99
COBBLE	Large	128	180	1		1	1	100
	Large	180	256					100
BOHRER	Small	256	362					100
	Small	362	512					100
	Medium	512	1024					100
	Large/Very Large	1024	2048					100
BEDROCK	Bedrock	2048	>2048					100
			Total	60	40	100	100	100

Reachwide					
Channel materials (mm)					
D ₁₆ = Silt/Clay					
D ₃₅ =	3.23				
D ₅₀ =	12.9				
D ₈₄ = 43.6					
D ₉₅ = 80.3					
D ₁₀₀ =	180.0				



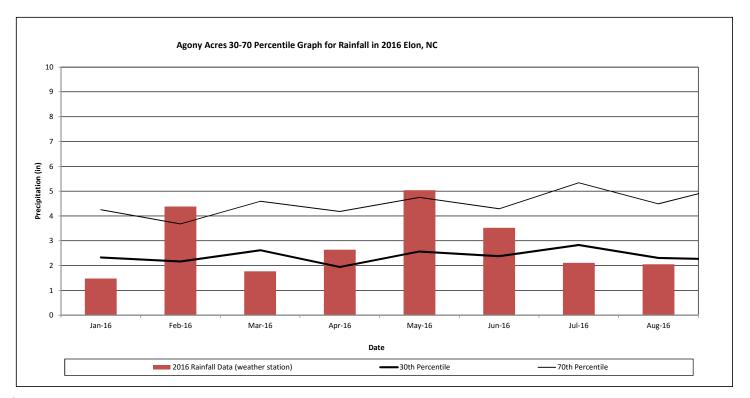


Agony Acres Mitigation Site (DMS Project No. 95716) Monitoring Year 2 - 2016 UT2, Cross Section 15

Particle Class		Diameter (mm)		Riffle 100-	Summary	
				Count	Class	Percent
		min	max		Percentage	Cumulative
SILT/CLAY	Silt/Clay	0.000	0.062	8	8	8
	Very fine	0.062	0.125			8
_	Fine	0.125	0.250	2	2	10
SAND	Medium	0.25	0.50			10
	Coarse	0.5	1.0			10
	Very Coarse	1.0	2.0	2	2	12
	Very Fine	2.0	2.8			12
	Very Fine	2.8	4.0			12
	Fine	4.0	5.6	8	8	20
	Fine	5.6	8.0	4	4	24
JEL	Medium	8.0	11.0	6	6	30
GRAVEL	Medium	11.0	16.0	8	8	38
	Coarse	16.0	22.6	10	10	48
	Coarse	22.6	32	18	18	66
	Very Coarse	32	45	14	14	80
	Very Coarse	45	64	8	8	88
	Small	64	90	8	8	96
alt	Small	90	128	4	4	100
COBBLE	Large	128	180			100
	Large	180	256			100
	Small	256	362			100
BOILDER	Small	362	512			100
	Medium	512	1024			100
	Large/Very Large	1024	2048			100
BEDROCK	Bedrock	2048	>2048			100
			Total	100	100	100

Cross Section 15						
Channel materials (mm)						
D ₁₆ = 4.73						
D ₃₅ =	13.90					
D ₅₀ =	23.5					
D ₈₄ =	53.7					
D ₉₅ =	86.2					
D ₁₀₀ =	128.0					

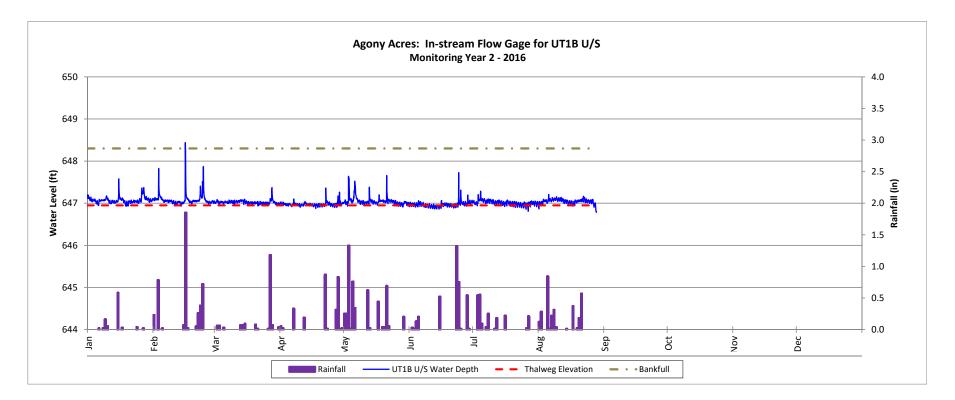
APPENDIX 5. Hydrology Summary Data and Plots

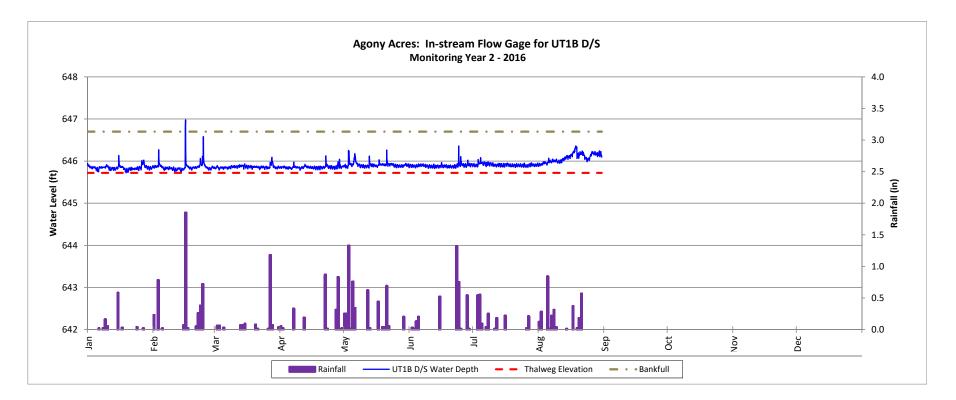

Table 13. Verification of Bankfull Events

Agony Acres Mitigation Site (DMS Project No.95716) Monitoring Year 2 - 2016

	Date of Data	Date of	
Reach	Collection	Occurrence	Method
UT1	3/14/2016	2/16/2016	
UT1A	3/14/2016	2/16/2016	Cract Cage/
UT1B	3/14/2016	2/16/2016	Crest Gage/ Pressure
OTIB	8/30/2016	5/3/2016	Transducer
UT2	3/14/2016	2/16/2016	Tansuucei
512	8/30/2016	5/3/2016	

Monthly Rainfall Data


Agony Acres Mitigation Site (DMS Project No.95716) Monitoring Year 2 - 2016


¹ 2016 monthly rainfall collected by onsite rain gage and Weather Underground Station KNCELON5 (Elon, NC).

² 30th and 70th percentile rainfall data collected from weather station NC723, at Pedimont Tiad Intl AP, NC (USDA, 2002).

Stream Flow Gage Plots

Stream Flow Gage Plots

